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Abstract

We develop a model that, at the aggregate level, is similar to the one sector neoclassical growth model,

while, at the disaggregate level, has implications for the path of observable measures of technology

adoption. We estimate our model using data on the di¤usion of 15 technologies in 166 countries over

the last two centuries. We evaluate the implications of our estimates for aggregate TFP and per capita

income. Our results reveal that, on average, countries have adopted technologies 47 years after their

invention. There is substantial variation across technologies and countries. Over the past two centuries,

newer technologies have been adopted faster than old ones. The cross-country variation in the adoption

of technologies accounts for at least a quarter of per capita income di¤erences.
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1 Introduction

Most cross-country di¤erences in per capita output are due to di¤erences in total factor productivity (TFP),

rather than to di¤erences in the levels of factor inputs.1 These cross-country TFP disparities can be divided

into two parts: those due to di¤erences in the range of technologies used and those due to non-technological

factors that a¤ect the e¢ ciency with which all technologies and production factors are operated. In this

paper, we explore the importance of the range of technologies used to explain cross-country di¤erences in

TFP.

Existing studies of technology adoption are not well suited to answer this question. On the one hand,

macroeconomic models of technology adoption (e.g. Parente and Prescott, 1994, and Basu and Weil, 1998)

use an abstract concept of technology that is hard to match with data. On the other hand, the applied

microeconomic technology di¤usion literature (Griliches, 1957, Mans�eld, 1961, Gort and Klepper, 1982,

among others) involves the estimation of di¤usion curves for a relatively small number of technologies and

countries. These di¤usion curves, however, are purely statistical descriptions which are not embedded in an

aggregate model. Hence, it is di¢ cult to use them to explore the aggregate implications of the empirical

�ndings.2

In this paper we bridge the gap between these two literatures by developing a new model of technology

di¤usion. Our model has two main properties. First, at the aggregate level it is similar to the one sector

neoclassical growth model. Second, at the disaggregate level it has implications for the path of observable

measures of technology adoption. These properties allow us to estimate our model using data on speci�c

technologies and then use it to evaluate the implications of our estimates for aggregate TFP and per capita

income.

A technology, in our model, is a group of production methods that is used to produce an intermediate

good or service. Each production method is embodied in a di¤erentiated capital good. A potential producer

of a capital good decides whether to incur a �xed cost of adopting the new production method. If he does,

he will be the monopolist supplying the capital good that embodies the speci�c production method. This

decision determines whether or not a production method is used, which is the extensive margin of adoption.

The size of the adoption costs a¤ects the length of time between the invention and the eventual adoption of

a production method, i.e. its adoption lag. Once the production method has been introduced, its productivity

determines how many units of the associated capital good are demanded, which re�ects the intensive margin

1Klenow and Rodríquez-Clare (1997), Hall and Jones (1999), and Jerzmanowski (2004).
2Another strand of the literature has also used more aggregate measures of di¤usion to explore the determinants of adoption

lags (Saxonhouse and Wright, 2000, and Caselli and Coleman, 2001) or the di¤usion curve (Manuelli and Seshadri, 2003) for

one technology. Our paper di¤ers from these three studies in that (i ) we speci�cally develop an aggregate model to assess the

implications of technology adoption di¤erentials for per capita GDP disparities, and (ii ) our analysis covers a wide range of

technologies and countries.
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of adoption. Our model is thus very similar in spirit to the barriers to riches model of Parente and Prescott

(1994), which yields endogenous TFP di¤erentials across countries due to di¤erent adoption lags.

The endogenous adoption decisions determine the growth rate of productivity embodied in the technology

through two channels. First, because new production methods embody a higher level of productivity their

adoption raises the average productivity level of the production methods in use. This is what we call the

embodiment e¤ect. Second, an increase in the range of production methods used also results in a gain from

variety that boosts productivity. This is the variety e¤ect.

When the number of available production methods is very small, an increase in the number of methods

has a relatively large e¤ect on embodied productivity. As this number increases, the productivity gains from

such an increase decline. Thus, the variety e¤ect leads to a non-linear trend in the embodied productivity

level. Since adoption lags a¤ect the range of production methods used, and thus the variety e¤ect, adoption

lags a¤ect the curvature in the path of embodied productivity.

Our model maps this curvature in embodied productivity into similar non-linearities in the evolution of

observable measures of technology adoption, such as the number of units of capital that embody a given

technology or the output produced with this technology. These measures encompass both the extensive as

well as the intensive margin of adoption of these technologies. To identify the adoption lags using these

adoption measures, we need to use our model�s predictions. In particular, our model determines how the

curvature of these measures depends on adoption lags and on economy-wide conditions that determine

aggregate demand. By using the structure imposed by our model on these measures of technology di¤usion,

we can identify the adoption lags for each technology and country.

Our model is broadly consistent with the empirical di¤usion literature in that it predicts an S-shape

di¤usion pattern for conventional adoption measures that only capture the extensive adoption margin. How-

ever, the actual di¤usion curves implied by the reduced form equations are not S-shaped. This is because

our measures incorporate both the extensive and intensive adoption margins. S-shape curves provide a poor

approximation to the evolution of technology measures that incorporate the latter.3

We use data from Comin, Hobijn, and Rovito (2006) to explore the adoption lags for 15 technologies for

166 countries. Our data cover major technologies related to transportation, telecommunication, IT, health

care, steel production, and electricity. We obtain precise and plausible estimates of the adoption lags for two

thirds of the 1278 technology-country pairs for which we have su¢ cient data. There are three main �ndings

that are especially worth taking away from this exploration of technology di¤usion.

First, adoption lags are large. The average adoption lag is 47 years. There is, however, substantial

variation in these lags, both across countries and across technologies. The standard deviation in adoption

lags is 39 years. An analysis of variance yields that 54% of the variance in adoption lags is explained by

3See Comin et al. (2008) for a detailed explanation of this argument.
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variation across technologies, 18% by cross-country variation, and 11% percent by the covariance between the

two. The remaining 17% is unexplained. We also �nd that newer technologies have been adopted faster than

older ones. This acceleration in technology adoption has taken place during the whole two centuries that are

covered by our data. Thus, it started long before the digital revolution or the post-war globalization process

that have often been cited as the driving forces behind rapid di¤usion of technologies in recent decades.

Second, the remarkable development records of Japan in the second half of the Nineteenth Century

and the �rst half of the Twentieth Century and of the, so-called, East Asian Tigers in the second half

of the Twentieth Century all coincided with a catch-up in the range of technologies used with respect to

industrialized countries. All these development �miracles�involved a substantial reduction of the technology

adoption lags in these countries relative to those in (other) OECD countries.

Third, our model can be used to quantify the aggregate implications of the estimated adoption lags for

cross-country per capita income di¤erentials. Doing so yields that cross-country di¤erences in the timing of

adoption of new technologies seems to account for at least a quarter of per capita income disparities.

The rest of the paper is organized as follows. Because the focus of our analysis is on technology, we devote

the second section of our paper to a detailed explanation of the assumptions we make about the technology

structure in our model economy. We then proceed in two directions.

First, in Section 3 we show how our assumptions nest a version of the one-sector neoclassical growth

model with adoption lags, we introduce a set of simplifying assumptions about the technology, as well as

add preferences, endogenize the technology adoption decision, and show how these assumptions yield the

neoclassical growth model.

Second, in Section 4, we discuss how we identify and estimate the adoption lags for the country-technology

pairs in our data. In Section 5, we present our estimates, use them for country case-studies, and quantify

their implications for cross-country TFP di¤erentials. In Section 6, we conclude by presenting directions for

future research. For the sake of brevity, most of the mathematical derivations are relegated to Appendix B.

2 A one sector growth model with endogenous technology adop-

tion

We present our theoretical analysis in the context of a one sector model. When presenting the notion of

technology, we make a number of simplifying assumptions for the sake of clarity. We explain how to generalize

the model and how the basic results hold in these more general settings. This is important when bringing

the model to the data in sections 3 and 4. In what follows, we ommit time subscripts, t; whenever possible.
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2.1 Preferences

A measure one of households populate the economy. They inelastically supply one unit of labor every instant,

at the real wage rate W , and derive the following utility from their consumption �ow

U =

Z 1

0

e��t ln(Ct)dt, (1)

where Ct denotes per capita consumption and � is the discount rate. The representative household has an

initial wealth level of S0 and cannot run Ponzi schemes. We further assume that capital markets are perfectly

competitive and that consumers can borrow and lend at rate r:

The representative consumer�s path of consumption is characterized by the following Euler equation

_C

C
= r � � (2)

and lifetime budget constraint: Z 1

0

(Cs �Ws)e
�
R s
0
rs0ds

0
ds = S0, (3)

where W is the wage rate she earns.

2.2 Technology

In our model economy, �nal output, Y; is produced competitively by combining a continuum of intermediate

goods, Yv; as follows:

Y =

�Z
v2V

Y
1
�
v�dv

��
, with � > 1: (4)

Each intermediate good, Yv; is produced by combining labor and capital, Kv; that embodies a speci�c

production method that we call a technology vintage (or vintage) in the following Cobb-Douglas form:

Yv = ZvL
1��
v K�

v , (5)

Productivity growth is embodied in new vintages and is captured by the variable Zv. The embodied pro-

ductivity of new vintages grows at a rate  across vintages. The productivity of a given vintage is constant

over time.

Zv = Z0e
v (6)

Each instant, a new production method appears exogenously. This characterizes the evolution of the

world technology frontier. A country does not necessarily use all the capital vintages that are available in

the world because, as we discuss below, making them available for production is costly. We denote the set
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of vintages actually used by V = (�1; t �D]. Here D � 0 denotes the adoption lag. That is, the amount

of time between when the best technology in use in the country became available and when it was adopted.

To economize on notation, all new technology vintages enter symmetrically in the production function

(4). In reality, however, there are two di¤erent types of innovations. On the one hand, we can think of

the introduction of a new version of an old technology (e.g. a new version of the tractor). On the other,

the innovation can take the form of a radically new technology (e.g. the �rst version of the tractor). A

priori, it might be important to treat these innovations separately for at least two reasons. First, because

the productivity embodied in each of them may be di¤erent. Second, because the elasticity of substitution

between two intermediate goods, may depend on whether they belong to the same technology.

In Comin and Hobijn (2008), we develop a more general version of the model that allows for these features

and that, for all practical purposes, is isomorphic to our model, as we discuss below. However, when bringing

the model to the data, it will be important to derive predictions for measures of di¤usion at the technology

(vs. vintage) level since this is the data available. We close this gap between theory and data by assuming

that at pre-speci�ed times, v
¯ �
; the vintage that appears is the �rst vintage associated to a new technology,

� . From that moment on, no more vintages of the old technology appear. The new vintages will be new

versions of technology � ; until the next technology arrives at time v
¯ �+1

:

Under this interpretation, we can rewrite the production function (4) as:

Y =
�
Y
1=�
� 0 + Y 1=��

��
where

Y� �
 Z

V jv�v
¯ �

Y 1=�v dv

!�

Y� 0 �
 Z

V jv<v
¯ �

Y 1=�v dv

!�
denote output composite produced with the intermediate goods associated to technology � ; Y� ; and to all

technologies prior to � ; Y� 0 :

Capital goods production and technology adoption:

Capital goods are produced by monopolistic competitors. Each of them holds the patent of the capital good

used for a particular production method. It takes Q units of �nal output to produce one unit of capital of

any vintage. This production process is assumed to be fully reversible. Q declines at a constant rate q.

By introducing investment-speci�c technological progress in this way, we allow for a trend in the relative

price of capital goods when measured in the particular units used in our data set. For example, when we

measure the number of trucks, q� re�ects the decline in the price per truck relative to the �nal good price.

6



The capital goods suppliers rent out their capital goods at the rental rate Rv and capital goods depreciate

at rate �.

2.3 Factor demands

We use the �nal good as the numeraire good throughout our analysis and, accordingly, normalize its price

P = 1.

Intermediate goods demand :

The demand for the output produced with vintage v, Yv, is

Yv = Y (Pv)
��
��1 , where P =

�Z
v2V

P
� 1
��1

v dv

��(��1)
. (7)

Labor is homogenous, competitively supplied at the real rate W and perfectly mobile across sectors.

Since Yv is produced competitively, its price equals its marginal cost of production:

Pv =
1

Zv

�
W

(1� �)

�1���
Rv
�

��
. (8)

Capital goods suppliers:

The supplier of each capital good recognizes that the rental price he charges for the capital good, Rv, a¤ects

the price of the output associated with the capital good and, therefore, its demand, Yv. The resulting demand

curve faced by the capital good supplier is

Kv = Y Z
1

��1
v

�
(1� �)
W

� 1��
��1

�
�

Rv

��
, where � � 1 + �

�� 1 . (9)

Here, � is the constant price elasticity of demand that the capital goods supplier faces. As a result, the pro�t

maximizing rental price equals a constant markup times the marginal production cost of a unit of capital.

Because of the durability of capital and the reversibility of its production process, the per-period marginal

production cost of capital is Q times the technology-speci�c user-cost of capital. Thus, the rental price that

maximizes the pro�ts accrued by the capital good producer is

Rv = R =
�

�� 1Q (r + � + q) =
�

�� 1QUC, (10)

where �
��1 is the constant gross markup factor.

2.4 Aggregates at the intermediate good level

The lack of data at the capital vintage level makes it impossible to conduct empirical analyses at this level

of aggregation. Therefore, we derive the technology-speci�c aggregates for which data are available.
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Technology level output and inputs:

The factor demands for the capital vintage speci�c output Yv allow us to express output associated to

technology � in the following Cobb-Douglas form

Y� = A�K
�
� L

1��
� , (11)

where

K� �
Z
v2V�

Kv�dv, and L� �
Z
v2V�

Lv�dv, (12)

and the TFP composite associated with intermediate � is

A� =

�Z
v2V�

Z
1

��1
v� dv

���1
. (13)

Just like for the underlying capital vintage speci�c outputs, the total wage bill paid to labor used to produce

intermediate � exhausts a constant fraction (1� �) of the revenue generated by the sale of intermediate

good � and the rental costs of capital exhaust the rest. Moreover, the price of the intermediate equals the

marginal cost of production

P� =
1

A�

�
Y

L

�1���
R�
�

��
. (14)

By the same tolken, we can derive an expression for aggregate output, Y:

Y = AK�L1��, (15)

where

K �
Z
v2V

Kvdv, and L �
Z
v2V

Lvdv, (16)

and TFP is

A =

�Z
v2V

Z
1

��1
v dv

���1
. (17)

Technology speci�c TFP and adoption lags:

The endogenous level of TFP in the production of intermediate � at time t (17) can be expressed as

A� =

�
�� 1


���1
Zv� e

(t�D�;t�v�)| {z }
embodiment e¤ect

h
1� e�

�
��1 (t�D�;t�v�)

i��1
| {z }

variety e¤ect

(18)

From this equation, it can be seen that our model introduces two mechanisms by which the adoption lags,

D�;t, a¤ect the level of TFP in the production of intermediate � : (i) the embodiment e¤ect ; and (ii) the

variety e¤ect.
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First, as newer vintages with higher embodied productivity are adopted in the economy, the level of

embodied productivity increases. This mechanism is captured by the �embodiment e¤ect�term of (18) which

re�ects the productivity embodied in the best vintage adopted in the economy.

The range of vintages available for production also a¤ects the level of embodied productivity of technology

� . In particular, an increase in the measure of vintages adopted leads to higher productivity through the

gains from variety. This is captured by the �variety e¤ect�term in expression (18).

Capital goods production and technology adoption:

In order to become the sole supplier of a particular capital vintage, the capital good producer must undertake

an investment, in the form of an up-front �xed cost. We interpret this investment as the adoption cost of

the production method associated with the capital vintage.

The cost of adopting vintage v at instant t is assumed to be

�vt = V (1 + b)

�
Zv
Zt

� #
��1

PvYv, where # > 0, and (19)

Zt � Z0�e
t (20)

denotes the world technology frontier at time t; and V is the steady state stock market capitalization to

GDP ratio.4

We include V in the cost function for normalization purposes. The term (Zv=Zt)
#

��1 captures the idea

that it is more costly to adopt technologies the higher is their productivity relative to the productivity of

the frontier technology. The parameter b re�ects barriers to adoption in the sense of Parente and Prescott

(1994). The term PvYv captures the idea that the cost of adoption is increasing in the market size. We

choose this functional form because, just like the adoption cost function in Parente and Prescott (1994), it

yields the existence of an aggregate balanced growth path. As we shall see below, in this balanced growth

path, the adoption lags are constant, and we can separately identify the intensive and extensive margins of

adoption. It could of course be the case that the linearity in the adoption cost function is violated for some

particular technology for some particular country, without necessarily violating balanced growth, but to the

extent that we are documenting adoption lags across many technologies this is perhaps not so critical.

2.5 Optimal adoption

The �ow pro�ts that the capital goods producer of vintage v earns are equal to

�v =
�

�
PvYv =

�

�

�
Zv
A

� 1
��1

Y (21)

4 In particular, V = �
�

1n
�+ 1

��1 (�+)
o .
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The market value of each capital goods supplier equals the present discounted value of the �ow pro�ts. That

is,

Mv;t =

Z 1

t

e�
R s
t
rs0ds

0
�vsds =

�
Zv
Zt

� 1
��1
�
Zt
At

� 1
��1

VtYt. (22)

where

Vt =
�

�

Z 1

t

e�
R s
t
rs0ds

0
�
At
As

� 1
��1
�
Ys
Yt

�
ds (23)

is the stockmarket capitalization to GDP ratio.5

Optimal adoption implies that, every instant, all the vintages for which the value of the �rm that produces

the capital good is at least as large as the adoption cost will be adopted. That is, for all vintages, v, that

are adopted at time t

�v �Mv (24)

This holds with equality for the best vintage adopted if there is a positive adoption lag.6

The adoption lag that results from this condition equals

Dv = max

�
� � 1
#

�
ln (1 + b)� lnV + lnV

	
; 0

�
= D (25)

and is constant across vintages, v. Note also that, since in balance growth V = V ; the adoption lags do not

depend, in the steady state. on aggregate TFP or GDP: Further, since the e¤ect of an individual technology

� on aggregate TFP are negligible, Dv is also una¤ected by cross-country variation in Z0 for an speci�c

technology: Intuitively, all of these variables a¤ect the size of the market for the new vintages. Given the

speci�cations of the production function and the cost of adoption, the market size a¤ects symmetrically the

bene�ts and costs of adoption. As a result, variation in market size does not a¤ect the timing of adoption,

i.e. the adoption lags. However, as we shall see below, it a¤ects how many units of the speci�c vintage will

be demanded once it has been adopted, i.e. the intensity of adoption.

The resulting aggregate TFP level equals

At = A0e
(t�Dt), (26)

where A0 > 0 is a constant that depends on the model parameters.7 Hence, aggregate TFP in this model is

endogenously determined by the adoption lags induced by the barriers to entry.

Moreover, the total adoption costs across all vintages adopted at instant t equal

� = V (1 + b)

�


� � 1

�
e�

#
��1DY

�
1�

�
D

�
, (27)

5This can be interpreted as the stockmarket capitalization if all monopolistic competitors are publicly traded companies.
6 If the frontier vintage, t, is adopted, and there is no adoption lag, then �t� �Mt� . For simplicity, we ignore the possibility

that, for the best vintages, already adopted �v� > Mv� . In that case, no new vintages are adopted. This possibility is included

in the mathematical derivations in Appendix B.

7 In particular A0 = Z0
�
��1


���1 ��
��1
�

�
�
�
��1
�+

����1
.
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where
�
D denotes the time derivative of the adoption lags.

2.6 Equilibrium

The equilibrium path of the aggregate resource allocation in this economy can be de�ned in terms of the

following eight equilibrium variables fC;K; I;�; Y; A;D; V g. Just like in the standard neoclassical growth

model, the capital stock, K, is the only state variable. The eight equations that determine the equilibrium

dynamics of this economy are given by

(i) The consumption Euler equation, (2).

(ii) The aggregate resource constraint8

Y = C + I + �. (28)

(iii) The capital accumulation equation
�
K = ��K + I. (29)

(iv) The production function, (15), taking into account that in equilibrium L = 1.

(v) The adoption cost function, (27).

(vi) The technology adoption equation, (25), that determines the adoption lag.

(vii) The stockmarket to GDP ratio, (23).9

(viii) The aggregate TFP level, (26).

In addition to these equations that pin down the equilibrium dynamics, the lifetime budget constraint, (3),

pins down the initial level of consumption. We derive the balanced growth path and approximate transitional

dynamics of this economy in Appendix B. The growth rate of this economy on the balanced growth path is

= (1� �).

Below the surface:

Underlying these aggregate dynamics, there is a continuum of di¤usion curves for the expanding set of

vintages and technologies. Where aggregate TFP grows at the constant rate � + , the technology-speci�c

TFP level is given by

Z�t =

�
� � 1


���1
Z0e

�e(t�Dt��)
h
1� e�


��1 (t�Dt��)

i��1
. (30)

Just like (18), (30) has a variety e¤ect which introduces a non-linearity in Z� . This non-linearity is critical

for our empirical application.

8We assume that adoption costs are measured as part of �nal demand, such that Y can be interpret as GDP.
9The dynamics of Vt are what are considered in the system of equilibrium equations. The law of motion of the stockmarket

to GDP ratio is given by
_V
V
=
n
� ��1

�
Y
K
� � + 1

��1
_A
A
� _Y

Y

o
� �

�
1
V
.
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As we show below, the evolution of technology-speci�c TFP governs the speed of di¤usion as well as the

shape of the di¤usion curve of a technology. The variety e¤ect thus drives the non-linearity in the di¤usion

curve. Since the measure of varieties adopted depends on the di¤usion lag, the curvature of the di¤usion

curve allows us to identify the adoption lags in the data.

GENERALIZATION

continuous

higher elasticity of substitution between vintages within a technology that across technologies.

 + �

3 Empirical application

The simplifying assumptions that we made for the one-sector growth model are useful because they yield a

tractable aggregate production function representation. They do, however, ignore cross-technology variation

that might be important in the data. For our empirical investigation, we reintroduce the cross-technology

variation by allowing �� , � , q� to be di¤erent across technologies. Our aim is to estimate the adoption

lags for di¤erent technology-country pairs. To make this estimation practically feasible, we assume that the

economy is in steady state. This implies that the adoption lags may di¤er across countries and technologies

but are constant over time. In this section, we describe our measures of technology di¤usion, derive their

reduced form equations and describe the method we use to estimate these equations. Before doing so,

however, we relate our measures of di¤usion to more traditional measures introduced by Griliches (1957)

and Mans�eld (1961).

3.1 Measures of di¤usion

The empirical literature on technology di¤usion has mainly focused on the analysis of the share of potential

adopters that have adopted a technology. Such shares capture the extensive margin of adoption. Computing

these measures requires micro level data that are not available for many technologies and countries. As a

result, over the last 50 years, the di¤usion of only relatively few technologies in a very limited number of

countries has been documented.10

Our model allows us to explore its predictions for alternative measures of technology di¤usion for which

data is more widely available. In particular, we focus on (i) Y� , the level of output of the intermediate good

produced with technology � ; (ii) K� , the capital inputs used in the production of this output.

10The most remarkable �nding of the traditional di¤usion literature is that, for a majority of the technologies for which it has

been possible to construct the di¤usion measures, the di¤usion curves are S-shaped. As explained in more detailed in Comin

and Hobijn (2008), our model is roughly consistent with this �nding.
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These variables have two advantages over the traditional measures. First, they are available for a broad

set of technologies and countries. Second, they capture (directly or indirectly) the number of units of the new

technology that each of the adopters has adopted. This intensive margin is important to understand cross-

country di¤erences in adoption patterns. For spindles, for example, Clark (1987) argues that this margin is

key to explaining the di¤erence in adoption and labor productivity between India and Massachusetts in the

Nineteenth century.

In order to see how our measures relate to the traditional di¤usion measures consider the following

decomposition of K� and Y�

K� =

�
L�
L

��
K�=L�
K=L

��
K

Y

�
Y (31)

Y� =

�
L�
L

��
Y�=L�
Y=L

�
Y (32)

The �rst component of these expressions measures the share of the labor inputs devoted to technology � .

This captures the extensive margin of adoption, and is similar to the measures most commonly used in

empirical microeconomic studies. The second component measures the intensive margin of adoption of the

technology � relative to the economy. In expression (31) this corresponds to the technology-speci�c capital-

labor ratio relative to the economy wide ratio. In expression (32) it is measured by the labor productivity

in the production of intermediate � relative to aggregate labor productivity. This term re�ects what Clark

(1987) perceived was the di¤erence between Massachusetts and India. Namely, distortions in the adoption

of new technologies that caused an ine¢ ciently low intensity of adoption.11 The third component of (31) is

the capital output ratio and re�ects the fact that more capital intensive economies tend to have more capital

embodying all the technologies, including the new ones. Finally, the last component in both expressions

re�ects the size of the economy.

These di¤erent components are not separately distinguishable in the data. To make further progress in

our exploration of technology di¤usion, we use our model to derive estimable reduced form equations for K�

and Y� . These reduced form equations relate the paths of the �rst two components of (31) and (32) to the

adoption lags, D� . This allows us to relate the technology adoption measures to observable variables and to

estimate the adoption lags.

11 Interestingly , it can easily be shown, that including these distortions in our model is isomorphic to increasing the cost of

adopting the new technology. Hence, our estimates of the adoption lags will include the e¤ects of such distortions.
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3.2 Reduced form equations

We denote the technology measures for which we derive reduced form equations by m� 2 fy� ; k�g. Small

letters denote logarithms. By combining the log-linearized versions of the demand equation (??)

y� = y �
�

� � 1p� , (33)

and the intermediate goods price (??)

p� = �� ln�� z� + (1� �) (y � l) + �r� , (34)

we obtain the reduced form equation (35) for y� .12

y� = y +
�

� � 1 [z� � (1� �) (y � l)� �r� + � ln�] (35)

Similarly, we obtain the reduced form equation for k� by combining the log-linear capital demand equation

k� = ln�+ p� + y� � r� . (36)

with (33) and (34). These expressions depend on the adoption lag D� ; through the e¤ect the lag has on z� :

They also contain the technology-speci�c capital rental rate, r� , for which we do not have data. As

mentioned above, the constant adoption lags for each country and technology over time that we estimate

implicitly mean that we assume that the economies are close to steady state. This would mean that r� is

approximately constant over time. Consistent with this, we present our estimates for the case of a constant

rental rate, where r� is part of the constant term that we estimate.13

At this point we could estimate the reduced form equations. However, to a �rst order approximation

� only a¤ects y� and k� through the linear trend. More speci�cally, in Appendix B, we log-linearize (18)

around � = 0 to obtain the approximation

z� � zv� + (�� 1) ln (t� T� )�
�
2
(t� T� ) , (37)

where T� = v� +D� is the time that the technology is adopted.

In this approximation, the growth rate of embodied technological change, � , only a¤ects the linear trend

in z� . Intuitively, when there are very few vintages in V� the growth rate of the number of vintages, i.e. the
12Using the fact that the �nal output is the numeraire, we can rewrite (35) as

y� = y +
�

� � 1
((z� � z) + �(r � r� ))

Intuitively, y� depends on aggregate demand and on the technology-speci�c level of TFP relative to the overall level of TFP

and on the relative rental for technology � capital relative to the aggregate rental rate.
13The results are not very sensitive to this assumption. Estimates based on a version of the model that includes a log-

linearization of the real interest rate, which results in the addition of the growth rate of per capita income as an explanatory

variable to capture the transitional dynamics, yield adoption lags that are almost identical to the ones that we present here.
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growth rate of t � T� , is very large and it is this growth rate that drives growth in z� through the variety

e¤ect. Only in the long-run, when the growth rate of the number of varieties tapers o¤, the growth rate of

embodied productivity, � , becomes the predominant driving force of the variety e¤ect.

This result implies that, in �rst-order, both � and q� cause a linear trend in our technology measures.

Thus, � , is only separately identi�ed from q� through second-order e¤ects, which are small for � close to

zero. Therefore, we present the estimates obtained using the log-linear approximation of z� in the estimation,

(37), and do not provide estimates of � .
14

Then, as we derive in Appendix B, the reduced form equation that we estimate is the same for both

capital and output measures and is of the form

m� = �1 + y + �2t+ �3 ((�� 1) ln (t� T� )� (1� �) (y � l)) + "� , (38)

where "� is the error term. The reduced form parameters are given by the ��s. We do not estimate � and

�. Instead, we calibrate � = 1:3, based on the estimates of the markup in manufacturing from Basu and

Fernald (1997), and � = 0:3 consistent with the post-war U.S. labor share.15

3.3 Identi�cation of adoption lags and estimation procedure

We use the reduced form equations to estimate country-technology-speci�c adoption lags. For this purpose,

we make the following three assumptions: (i) Levels of aggregate TFP, relative investment prices, and units

of measurement of the technology measures potentially di¤er across countries; (ii) technology-speci�c growth

rates of investment speci�c technological change, q� , embodied technological change, � , as well as the growth

rate of aggregate TFP, are the same across countries; (iii) technology parameters are the same except for

the adoption lags.

In order to see how these assumptions translate into cross-country parameter restrictions, we consider

which structural parameters a¤ect each of the reduced form parameters. The �xed e¤ect, �1, captures four

things (i) the units of the technology measure; (ii) the level of the relative price of investment goods, Q� ;

(iii) di¤erent TFP levels across countries, and (iv) di¤erences in adoption lags. Because we assume that

these things can vary across countries, we let �1 vary across countries as well. The trend-parameter, �2, is

assumed to be constant across countries because it only depends on the output elasticity of capital, �,16 and

14We have also estimated the reduced form equations using the actual expression for z� , (18). Because � is locally non-

identi�ed at zero, this yields imprecise estimates of � . However, it results in virtually identical estimates of the adoption

lags.
15Our estimates of the adoption lags are also robust to alternative calibration of � to a wide range of values both higher and

lower than 1:3.
16The output elasticity of capital is one minus the labor share in our model. Gollin (2002) provides evidence that the labor

share is approximately constant across countries.
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on the trends in embodied and investment speci�c technological change, q� and � . �3 only depends on the

technology parameter, �, and is therefore also assumed to be constant across countries.

Given these cross-country parameter restrictions, the adoption lags, D� ; are identi�ed in the data through

the non-linear trend component in equation (38), which is due to the variety e¤ect. This is the only term

a¤ected by the adoption lag, D� . It is also the only term which a¤ects the curvature of m� after controlling

for the e¤ect of observables such as income and per capita income. Speci�cally, it causes the trend in m� to

monotonically decline with the time since adoption. This is the basis of our empirical identi�cation strategy

of D� . Intuitively, our model predicts that, everything else equal, if at a given moment in time we observe

that the trend inm� is diminishing faster in one country than another, it must be because the former country

has started adopting the technology more recently.

Note that, with this identi�cation scheme, we are not using the level of adoption to identify the adoption

lags. The intensive margin of adoption can be measured by the country-technology �xed e¤ect �1 in (38):

This term is determined, among other things, by the productivity of the technology, Z0� ; aggregate TFP and

the relative price of capital, Q0� : Note that, in our model, these factors do not a¤ect the timing of adoption,

i.e. the extensive margin, but a¤ect the intensity of adoption. In Appendix B we conduct some comparative

statics exercises to illustrate this point with an example.

Because the adoption lag is a parameter that enters non-linearly in (38) for each country, estimating

the system of equations for all countries together is practically not feasible. Instead, we take a two-step

approach. We �rst estimate equation (38) using only data for the U.S. This provides us with estimates of

the values of �1 and D� for the U.S. as well as estimates of �2 and �3 that should hold for all countries. In

the second step, we separately estimate �1 and D� , using (38) and conditional on the estimates of �2 and

�3 based on the U.S. data, for all the countries in the sample besides the U.S.

Besides practicalities, this two-step estimation method is preferable to a system estimation method for

two other reasons. First, if we would apply a system estimation method, data problems for one country

would a¤ect the estimates for all countries. Since we judge the U.S. data to be most reliable, we use them for

the inference on the parameters that are constant across countries. Second, our model is based on a set of

stark neoclassical assumptions. These assumptions are more applicable to the low frictional U.S. economic

environment than to that of countries in which capital and product markets are substantially distorted.

Thus, we think that our reduced form equation is likely to be misspeci�ed for some countries other than the

U.S. Including them in the estimation of the joint parameters would a¤ect the results for all countries.

We estimate all the equations using non-linear least squares.17 This means that the identifying assumption

that we make is that the logarithm of per capita GDP is uncorrelated with the technology-speci�c error, "� .

17 In Appendix B we conduct a simple Monte Carlo exercise that indicates that the estimates obtained by our estimation

procedure are quite precise.
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This identifying assumption essentially means that the causation goes from aggregate economic activity to

the adoption of a particular technology and not the other way around. This is probably not an unreasonable

assumption, since we focus on data for 15 out of the many technologies that drive aggregate economic

�uctuations.18

Because we derive the reduced form equations from a structural model, the theory pins down the set of

explanatory variables. However, even if one takes the theory as given, there are, of course, several potential

sources of bias in our estimates. The most important is our assumption that D� is constant over time.

Because D� is identi�ed through the curvature in the data, variations in D� over time would be identi�ed

by changes in this curvature. There is simply too little variation in the data for this identi�cation scheme.

If there is time variation in D� then our estimates would be skewed towards the adoption lag at the time of

adoption. This is because the variation in the curvature of the non-linear trend is larger right after adoption

than later on.

4 Results

We consider data for 166 countries and 15 technologies, that span the period from 1820 through 2003. The

technologies can be classi�ed into 6 categories; (i) transportation technologies, consisting of steam- and

motorships, passenger and freight railways, cars, trucks, and passenger and freight aviation; (ii) telecommu-

nication, consisting of telegraphs, telephones, and cellphones; (iii) IT, consisting of PCs and internet users;

(iv) medical, being MRI scanners; (v) steel, namely tonnage produced using blast oxygen furnaces; (vi)

electricity.

The technology measures are taken from the CHAT dataset, introduced by Comin and Hobijn (2004)

and expanded by Comin, Hobijn, and Rovito (2006). Real GDP and population data are from Maddison

(2007). Appendix A contains a brief description of each of the 15 technology variables used.

Unfortunately, we do not have data for all 2490 country-technology combinations. For our estimation,

we only consider country-technology combinations for which we have more than 10 annual observations.

There are 1278 such pairs in our data. The third column of Table 1 lists, for each technology, the number of

countries for which we have enough data.

For each of the 15 technologies, we perform the two-step estimation procedure outlined above. We divide

the resulting estimates up into three main groups: (i) plausible and precise, (ii) plausible but imprecise, and

(iii) implausible.

We consider an estimate implausible if our point estimate implies that the technology was adopted more

18A piece of evidence that supports this assumption is that, while our individual measures of technology are highly non-linear,

aggregate measures such as log TFP or log per capita GDP are almost linear.
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than 10 years before it was invented. The 10 year cut o¤ point is to allow for inference error. The sixth

column of Table 1 lists the number of implausible estimates for each of the technologies. In total, we �nd

implausible estimates in a bit less than one-third, i.e. 394 out of 1278, of our cases.

We have identi�ed three main reasons why we obtain implausible estimates. First, as mentioned above,

the adoption year T� is identi�ed by the curvature in the time-pro�le of the adoption measure. However, for

some countries the data is too noisy to capture this curvature. In that case, the estimation procedure tends

to �t the �atter part of the curve through the sample and infers that the adoption date is far in the past.

Second, for some countries the data exhibit a convex technology adoption path rather than the concave one

implied by our structural model. This happens in some African countries that have undergone dramatic

events such as decolonization or civil wars. Third, for some countries we only have data long after the

technology is adopted. In that case ln (t� T� ) exhibits little variation and T� is not very well-identi�ed in

the data. This can either lead to an implausible estimate of T� or a plausible estimate with a high standard

error.

Plausible estimates with high standard errors are considered plausible but imprecise.19 The number of

plausible but imprecise estimates can be found in the �fth column of Table 1. These are 51 out of the 1278

cases that we consider.

The cases that are neither deemed implausible nor imprecise are considered plausible and precise. The

fourth column of Table 1 reports the number of such cases for each technology. These represent 65 percent

of all the technology-country pairs. Hence, our model, with the imposed U.S. parameters, yields plausible

and precise estimates for the adoption lags for two-thirds of the technology-country pairs. In what follows,

all our results are based on the sample of 836 plausible and precise estimates.20

Included in these plausible and precise estimates are 15 estimates of adoption lags for the U.S. Because

we impose restrictions based on U.S. parameter estimates across countries, we plot the �t of our model for

the 15 technologies for the U.S. in Figures 1 and 2. As can be seen from these �gures, the model captures

the curvature in m� , which identi�es the adoption lags, for all of these technologies well.

Before we summarize the results for these 836 estimates, it is useful to start with an example. Figure 3

shows the actual and �tted paths ofm� for tonnage of steam and motor merchant ships for Argentina, Japan,

Nigeria, and the U.S. The estimated adoption years, T� , of steam and motorships for these countries are

1868, 1901, 1959, and 1813, respectively. This means that, on average over the sample period, the pattern

of U.S. steam and motor merchant ship adoption is consistent with a 1813 adoption date, according to our

model. Given that the �rst steam boat patent in the U.S. was issued in 1788, we thus estimate that the U.S.

19 In particular, the cut o¤ that we use is that the standard error of the estimate of T� is bigger than
p
2003� v� . This

allows for longer con�dence intervals for older technologies with potentially more imprecise data.
20Results that also include the imprecise estimates are both qualitatively and quantitatively very similar to the ones presented

here.

18



adopted the innovations that enabled more e¢ cient motorized merchant shipping services with an average

lag of 25 years.

Given the estimates of �2 and �3 based on the U.S. data, the adoption years are identi�ed through the

curvature of the path ofm� . The U.S. path is already quite �at in the early part of the sample. This indicates

an early adoption, i.e. a low T� , and a short adoption lag. When we compare the U.S. and Argentina, we

see that, in most years the path is more steep for Argentina than for the U.S. This is why we �nd a later

adoption date and bigger adoption lag for Argentina than for the U.S. Since Japan�s path is even steeper

than that of Argentina, the lag for Japan is even larger. A similar analysis reveals why we �nd the 1959

adoption date for Nigeria.

Comparing the data for Argentina and Japan also reveals another part of our identi�cation strategy. Our

focus is on the set of vintages in use and not on how many units of each vintage are in use. In our theoretical

framework, the latter, i.e. the intensive margin, is determined by the country-wide level of TFP and capital

deepening, not by the adoption cost. A country that uses more units of each vintage will have a higher level

of m� , which is the case for Japan relative to Argentina in Figure 3.

The R2�s associated with the estimated equations for tonnage of steam and motor merchant ships for

Argentina, Japan, Nigeria, and the U.S. are 0.96, 0.14, 0.85, and 0.95, respectively. The R2 for Japan is very

low because our model does not �t the, almost complete, destruction of the Japanese merchant �eet during

WWII. The other R2s are not only high because the model captures the trend in the adoption patters but

also because the model captures the curvature.

The last three columns of Table 1 summarize the properties of the R2�s for the 836 plausible and precise

estimates. Since we are imposing the US estimates for �2 and �3, the R
2 can be negative. The second to

last column of Table 1 lists the number of cases for which we �nd a positive R2 for each technology.

In total, we �nd negative R2�s for only 6.8 percent of the cases. Passenger railways and telegraphs are

the two where negative R2�s are more prevalent. This means that for those technologies the assumption that

the U.S. estimates for �2 and �3 apply for all countries seems unrealistic. These are both technologies that

have seen a decline in the latter part of the sample for the U.S. Such declines lead to estimates of the trend

parameter, �2, for the U.S. that do not �t the data for countries where these technologies have not seen such

a decline (yet). Though present, such issues do not seem to be predominant in our results.

The next to last and last columns of Table 1 list the sample mean and standard deviations of the

distributions of positive R2�s for each technology. Overall, the average R2, conditional on being positive, is

0.81 and the standard deviation of these R2�s is 0.19. Hence, even though we impose U.S. estimates for �2

and �3 across all countries, the simple reduced form equation, (38), derived from our model captures the

majority of the variation in m� over time for the bulk of the country-technology combinations in our sample.

We turn next to the estimates of the adoption lags. The main summary statistics regarding these
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estimates are reported in Table 2. The average adoption lag in our sample is 47 years with a median lag of

35. This means that the average adoption path of countries in our sample over all technologies is similar to

that of a country that adopts the technology 47 years after its invention.

However, there is considerable variation both across technologies and countries. For steam- and mo-

torships as well as railroads we �nd that it took about a century before they were adopted in half of the

countries in our sample. This is in stark contrast with PCs and the internet, for which it took less than 15

years for half of the countries in our sample to adopt them.

Though we do not impose it, we �nd that the percentiles of the estimated adoption lags are similar for

closely related technologies; passenger and freight rail transportation, cars and trucks, passenger and cargo

aviation, and even for the upper percentiles of telegraphs and telephones.

Table 3 decomposes the variations in adoption lags into parts attributable to country e¤ects and parts

due to technology e¤ects. Let i be the country index and let Di� be the adoption lag estimated for country

i and technology � . Table 3 contains the variance decomposition based on three regressions nested in the

following speci�cation

Di� = D
�
i +D

�
� + ui� (39)

where D�
i is a country �xed e¤ect, D

�
� is a technology �xed e¤ect, and ui� is the residual. The �rst line of

the table pertains to (39) with only country �xed e¤ects. Country-speci�c e¤ects explain about 30% of the

variation in the estimated adoption lags. Technology-speci�c e¤ects explain about twice as much, namely

66% of the variation. This can be seen from the second row of Table 3, which is computed from a version of

regression (39) with only technology �xed e¤ects. The last row of Table 3 shows that country and technology

�xed e¤ects jointly explain about 83% of the variation in the estimated adoption lags. Of this, 18% can be

directly attributed to country e¤ects, 54% can be directly attributed to technology e¤ects, and the remaining

11% is due to the covariance between these e¤ects that is the result of the unbalanced nature of the panel

structure of our data.

Understanding the determinants of adoption lags is beyond the goals of this paper. However, we do

consider whether adoption lags tend to have gotten smaller over time. To this end, Figure 4 plots the

invention date of each technology, v� , against the average adoption lag by technology as well as against

the technology �xed e¤ects, D�
� , obtained from (39). The message from both variables is the same. Newer

technologies have di¤used much faster than older technologies. In particular, technologies invented ten years

later are on average adopted 4.3 years faster.

This �nding is remarkably robust. As is clear from Figure 4, the average adoption lags of all 15 tech-

nologies covered in our dataset seem to adhere to this pattern. Moreover, the slope before and after 1950 is

almost the same. Hence, the acceleration of the adoption of technologies seems to have started long before

the digital revolution or the post-war globalization process.

20



Of course, this trend cannot go on forever. However, it has gone on at this pace for 200 years. If it persists,

it will have major consequences for the cross-country di¤erences in TFP due to the lag in technology adoption.

In particular, the TFP gap between rich and poor countries due to the lag in technology adoption should be

signi�cantly reduced.

4.1 Case studies

Thus far, we have focused on computing a set of broad summary statistics that describe the properties of

the estimated adoption lags. In addition to these broad patterns, these estimates also shed some light on a

number of debates that focus on particular (groups of) countries and episodes. To see how, consider Table

4. For each technology, it contains the average adoption lag for di¤erent (groups of) countries in deviation

from the average adoption lag for the technology.

4.1.1 U.S. and the U.K.

The U.S. and the U.K. have been the technological leaders over the last two centuries. Most of the major

technologies invented over the last two centuries have been invented either in the U.S. or in the U.K. Table

4 shows that they also have adopted new technologies much faster than the rest of the world. The shorter

adoption lags have surely contributed to their high levels of productivity and per capita income.

4.1.2 Japan

Until the Meiji restoration in 1867, Japan had an important technological gap with the western world. This

is re�ected in the Japanese adoption lag in steam and motor ships which is much longer than that in other

OECD countries and is comparable to the lags in Latin America. Technological backwardness, surely, was a

signi�cant determinant of the development gap between Japan and other (now) industrialized countries; in

1870, Japan�s real GDP per capita was 42 percent of the OECD average.

The industrialization process that was catalyzed by the Meiji restoration closed Japan�s technological

gap with the western world. This is re�ected by Japan�s adoption lags for the technologies invented in the

19th century, which are comparable to the lags in other OECD countries. The closing of the technology

gap also diminished the development gap. By 1920, per capita GDP in Japan was 56 percent of the OECD

average. For those technologies invented in the Twentieth Century, Japan�s adoption lag was signi�cantly

shorter than for the OECD average and it was comparable to the U.S. and also comparable to, if not shorter

than, the U.K.�s. For blast oxygen steel, for example, the adoption lag that we estimate for Japan is 5 years

shorter than for other OECD countries. By 1980 Japan�s per capita income was about the same as the U.K.,

26 percent higher than the OECD average, and 33 percent lower than the U.S.
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The estimated adoption lags for Japan thus seem to suggest that a large part of Japan�s phenomenal rise

in living standards between 1870 and 1980 involved closing the gap between the range technologies Japan

used and those used by the world�s industrialized leaders.

4.1.3 East Asian Tigers

Japan�s phenomenal rise was outdone in the second half of the 20th century by the East Asian Tigers

(EATs); Hong Kong, Korea, Taiwan and Singapore. These four countries experienced �miraculous�growth

in per capita GDP between 1960 and 1995 of around 6 percent per year.

There is disagreement about the sources of this growth. Young (1995) claims that factor accumulation

is the main source of growth in the EATs, while Hsieh (2002) challenges this view and argues that the TFP

growth experienced by the EATs is underestimated by Young (1995).21

Whether or not adoption lags show up as TFP or factor accumulation di¤erentials depends on the extent

to which capital stock data are quality adjusted. However, what we can say, based on our estimates, is that,

just like for Japan, the growth spurt of the EATs has been associated with a substantial reduction in their

technology adoption lags.

From Table 4, it is clear that the EATs had long adoption lags for early technologies. In particular, for

technologies invented before 1950, the EATs�adoption lags were often longer than in Sub-Saharan Africa

(SSA), and almost always longer than in Latin America. For newer technologies, however, the EAT�s adoption

lags are shorter than in Latin America and Sub-Saharan Africa. In fact, EATs adopted technologies invented

since 1950 about as fast as OECD countries.

Young (1992) focuses on the sources of growth in Singapore and Hong Kong and argues that the lower TFP

growth rate observed in Singapore re�ects its faster rate of structural transformation towards the production

of electronics and services, which did not allow agents to learn how to e¢ ciently use older technologies.

Some of the post-1950 technologies in our data set such as computers, cellphones, and the internet are surely

signi�cant for the production of both electronics and services. Hence, an implication of the Young hypothesis

would be that the Singaporean adoption lags in these technologies are shorter than in Hong Kong. As can

be seen from Table 5, this is not what we �nd. Singapore and Hong Kong are estimated to have the same

adoption lags in PCs and the internet, 14 and 7 years respectively. Hong Kong is estimated to have adopted

cellphones three years earlier than Singapore.

21More speci�cally, According to Hsieh, TFP growth was 2.2% in Singapore (vs. -0.7 for Young), 3.7% in Taiwan (vs. 2.1%

for Young), 1.5% in Korea (vs. 1.7% for Young) and 2.3% in Hong Kong (vs. 2.7% for Young).
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4.1.4 Latin America

Where the EATs are considered growth �miracles�, Latin American countries are often labeled as growth

�failures�. Some of them, such as Chile and Argentina, were among the richest countries in the world during

the late 1800s and the �rst half of the Twentieth Century (De Long, 1988). This designation is re�ected

in the fact that for the pre-1950 technologies Latin American countries adopted new technologies faster

than the average country. Since World War II, however, they have failed to maintain their position in the

development rankings and have been leapfrogged by numerous emerging economies, mostly in Asia. As can

be seen from Table 4, this disappointing growth performance since 1950 coincides with longer lags in the

adoption of new technologies in Latin American countries than in the average country.

4.1.5 Sub-Saharan Africa

Most Sub-Saharan countries have failed to grow at above average rates despite their low initial per capita

income. This performance is consistent with the long lags in technology adoption reported in Table 4. For

example, the adoption lags for passenger and freight aviation were, respectively, 22 and 33 years longer than

for the average country. The extra lag was 24 years for steam and motor ships, 30 years for the telegraph, and

10 years for the telephone. The most recent technologies have also been adopted more slowly in Sub-Saharan

countries than in the rest of the world. However, due to the overall decline in adoption lags, the di¤erence

between the lags of Sub-Saharan African countries and the average adoption lags for these technologies are

much shorter, i.e. between 1 and 2 years.

4.2 Development accounting

The brief case studies presented above suggest that variation in adoption lags may be associated with

both cross-country and time series variation in per capita income. Next, we explore whether the anecdotes

described above can be generalized. Speci�cally, we ask the following question: Are the adoption lags that

we estimated a signi�cant potential source of cross-country per capita income di¤erences?

To answer this question, we have to approximate the aggregate e¤ect of the estimated adoption lags for

the 15 technologies on per capita GDP levels. We do so by using the equilibrium results of our one-sector

growth model. If the only source of cross-country di¤erentials in per capita GDP is adoption lags, then, in

steady state, the log di¤erence of country i�s level of real GDP per capita with that of the U.S. is given by

(yi � l)� (yUSA � l) =
�+ 

1� � (DUS �Di) , (40)

where (�+ ) is the growth rate of aggregate TFP, which is 1.4% for the U.S. private business sector during

the postwar period. We observe the left hand side of (40) in our data and approximate the right hand side

in the following way. We use � +  = 0:014 and � = 0:3, consistent with postwar U.S. data. Moreover, we
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use the country �xed e¤ects from (39) to approximate Di � D�
i . Hence, we assume that the country-speci�c

adoption lags we have estimated for each country using our sample of technologies are representative of the

average adoption lags across all the technologies used in production.

Figure 5 plots the data for both sides of (40) for 123 countries in our dataset. The correlation between

both sides is 0.51. The solid line is the regression line while the dashed line is the 45�-line. The slope of the

regression line is about 0.25, which can be interpreted as that our model and estimates explain about one

fourth of the log per capita GDP di¤erentials observed in the data.

The model seems to explain a much larger part of per-capita income di¤erentials for high-income indus-

trialized countries that make up the set of observations in the upper-right corner of the �gure.22 This may

result from a downward bias in our estimates of D�
i for the poor countries in our sample. Speci�cally, due

to lack of data and/or plausible estimates for older technologies in poor countries, these technologies, which

tend to be adopted more slowly, do not a¤ect the estimate of D�
i for poor countries. This may result in

a downward bias of the average adoption lag for poor countries and in a lower cross-country dispersion in

adoption lags and in TFP di¤erentials due to di¤erences in adoption.

In conclusion, our empirical exploration shows that adoption lags account for a substantial share of

cross-country per capita income di¤erences. The share they account for seems to be at least 25%, if not

more.

5 Conclusion

In this paper we have built and estimated a model of technology di¤usion and growth that has two main

characteristics. First, at the aggregate level, it is similar to the one sector neoclassical growth model and

has a well-de�ned balanced growth path. Second, at the disaggregate level, it has implications for the path

of observable measures of technology adoption, such as the number of units of capital that embody a given

technology or the output produced with this technology.

The main focus of our analysis is on adoption lags. These lags are de�ned as the length of time between the

invention and adoption of a technology. Our model provides a theoretical framework that links the adoption

lag of a technology to the level of productivity embodied in the capital associated with it. It also relates the

path of the observable technology adoption measures over time to the path of embodied productivity and

to economy-wide factors driving aggregate demand. The adoption lag determines the shape of a non-linear

trend in embodied productivity as well as in the path of the technology measures. It is this non-linear trend

term that allows us to identify adoption lags in the data.

We estimate adoption lags for 15 technologies and 166 countries over the period 1820-2003, using data

22The slope for these countries is approximately 1.
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from Comin, Rovito, and Hobijn (2006). Our model does a good job in �tting the di¤usion curves. For two

thirds of the technology-country pairs we obtain precise and plausible estimates of the adoption lags. In light

of this result, we conclude that our model of di¤usion provides an empirically relevant micro-foundation for

a new set of measures of technology di¤usion that are more comprehensive and easier to obtain than the

measures used in the traditional empirical di¤usion literature.

We obtain three key �ndings. The �rst is that adoption lags are large, 47 years on average, and vary a

lot. The standard deviation is 39 years. Most of this variation is due to technology-speci�c variation, which

contributes more than half of the variance of adoption lags in our sample. Over the two centuries for which

we have data the average adoption lag across countries for new technologies has steadily declined.

The second �nding is that the growth �miracles�of Japan and the East Asian Tigers, though more than

half a century apart, both coincided with a reduction of the technology adoption lags in these countries

relative to those in their OECD counterparts.

Third, when we use our model to quantify the implications of the country-speci�c variation in adoption

lags for cross-country per capita income di¤erentials, we �nd that di¤erences in technology adoption account

for at least a quarter of per capita income disparities in our sample of countries.

Our exploration yields a set of precise estimates of the size of adoption lags across a broad range of

technologies and countries. We plan on using these in subsequent work to investigate what are the key

cross-country di¤erences in endowments, institutions, and policies that impinge on technology di¤usion.
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A Data

The data that we use are taken from two sources. Real GDP and population data are taken from Maddison

(2007). The data on the technology measure are from the Cross-Country Historical Adoption of Technology

(CHAT) data set, �rst described in Comin, Hobijn, and Rovito (2006). The �fteen particular technology

measures that we consider are:

1. Steam and motor ships:

De�nition: Gross tonnage (above a minimum weight) of steam and motor ships in use at midyear.

Invention year: 1788; the year the �rst (U.S.) patent was issued for a steam boat design.

2. Railways - Passengers:

De�nition: Passenger journeys by railway in passenger-KM.

Invention year: 1825; the year of the �rst regularly schedule railroad service to carry both goods and

passengers.

3. Railways - Freight:

De�nition: Metric tons of freight carried on railways (excluding livestock and passenger baggage).

Invention year: 1825; same as passenger railways.

4. Cars:

De�nition: Number of passenger cars (excluding tractors and similar vehicles) in use.

Invention year: 1885; the year Gottlieb Daimler built the �rst vehicle powered by an internal combus-

tion engine.

5. Trucks:

De�nition: Number of commercial vehicles, typically including buses and taxis (excluding tractors and

similar vehicles), in use.

Invention year: 1885; same as cars.

6. Aviation - Passengers:

De�nition: Civil aviation passenger-KM traveled on scheduled services by companies registered in the

country concerned.

Invention year: 1903; The year the Wright brothers managed the �rst succesful �ight.

7. Aviation - Freight:

De�nition: Civil aviation ton-KM of cargo carried on scheduled services by companies registered in

the country concerned.

Invention year: 1903; same as aviation - passengers.

28



8. Telegraph:

De�nition: Number of telegrams sent.

Invention year: 1835; year of invention of telegraph by Samuel Morse at New York University.

9. Telephone:

De�nition: Number of telegrams sent.

Invention year: 1876; year of invention of telephone by Alexander Graham Bell.

10. Cellphone:

De�nition: Number of users of portable cell phones.

Invention year: 1973; �rst call from a portable cellphone.

11. Personal computers:

De�nition: Number of self-contained computers designed for use by one person.

Invention year: 1973; �rst computer based on a microprocessor.

12. Internet users:

De�nition: Number of people with access to the worldwide network.

Invention year: 1983; introduction of TCP/IP protocol.

13. MRIs:

De�nition: Number of magnetic resonance imaging (MRI) units in place.

Invention year: 1977; �rst MRI-scanner built.

14. Blast Oxygen Steel:

De�nition: Crude steel production (in metric tons) in blast oxygen furnances (a process that replaced

bessemer and OHF processes).

Invention year: 1950; invention of Blast Oxygen Furnace.

15. Electricity:

De�nition: Gross output of electric energy (inclusive of electricity consumed in power stations) in

KwHr.

Invention year: 1882; �rst commercial powerstation on Pearl Street in New York City.

29



B Mathematical details

Derivation of equation (9):

The demand for capital of a particular vintage is given by the factor demand equation

Rv�Kv� = �Pv�Yv� (41)

Since revenue generated from the output produced with the vintage is determined by the demand function (7), we can write

Rv�Kv� = �Y�P
�

��1
� P

� 1
��1

v� (42)

Moreover, the price of the output produced with this vintage is given by the equilibrium unit production cost (8), such that we

can write

Rv�Kv� = �Y�P
�

��1
� Z

1
��1
v�

�
(1� �)
W

� 1��
��1

�
�

Rv�

� �
��1

(43)

such that

Kv� = Y�P
�

��1
� Z

1
��1
v�

�
(1� �)
W

� 1��
��1

�
�

Rv�

��
(44)

where

� =
�

�� 1
� 1� �
�� 1

= 1 +
�

�� 1
(45)

which is equation (9).

Derivation of equation (10):

The Lagrangian associated with the dynamic pro�t maximization problem of the supplier of capital good v for intermediate �

at time t equals

Lv�t =
1Z
t

e�
R s
t rs0ds

0
Hv�sds (46)

where Hv�s is the current value Hamiltonian. We will drop the time subscript s in what follows. Here

Hv� = (Rv�Kv� �QIv� ) + (47)

�v�

 
Rv�Kv� � �Y�P

�
��1
� Z

1
��1
v�

�
(1� �)
W

� 1��
��1

�
�

Rv�

���1!
+

�v� (Iv� � ��Kv� )

Here �v� is the co-state variable associated with the demand function that the capital goods supplier faces and �v� is the

co-state variable associated with the capital accumulation equation.

The resulting optimality conditions read

w.r.t. Rv� : (1 + �v� )Kv� + (�� 1)�v�Kv� = 0

w.r.t. Iv� : �v� = Q

w.r.t. Kv� : (1 + �v� )Rv� � ��v� = r�v� �
�
�v�

(48)

The �rst optimality condition yields that

�v� = �
1

�
(49)

while the second and third yield that

Rv� =
1

(1 + �v� )
Q (r + �� + q� ) (50)

=
�

�� 1
Q (r + �� + q� )

which is (10). Note that the resulting �ow pro�ts satisfy
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�v� =
1

�� 1
Q� (r + �� + q� )Kv� =

1

�
Rv�Kv� (51)

Derivation of intermediate technology aggregation results:

The factor demands for each of the vintage speci�c output types satisfy

WL� =W

Z
v2V�

Lv�dv = (1� �)
Z
v2V�

Pv�Yv�dv = (1� �)P�Y� (52)

and

RK� = R

Z
v2V�

Kv�dv = �

Z
v2V�

Pv�Yv�dv = �P�Y� (53)

Hence relative factor demands are the same as relative revenue levels

Pv�Yv�

P�Y�
=

�
Yv�

Y�

� 1
�

=
Lv�

L�
=
Kv�

K�
(54)

which allows us to write

Yv� = Zv�K
�
v�L

1��
v� = Zv�

�
Yv�

Y�

� 1
�

K�
� L

1��
� (55)

= (Zv� )
�

��1

�
1

Y�

� 1
� �
K�
� L

1��
�

� �
��1

Such that we obtain that

Y� =

�Z
v2V�

Y
1
�
v� dv

��
=

�Z
v2V�

Z
1

��1
v� dv

�� � 1

Y�

� 1
� �
K�
� L

1��
�

� �
��1 (56)

=

�Z
v2V�

Z
1

��1
v� dv

���1 �
K�
� L

1��
�

�
= Z�K

�
� L

1��
�

The value of the unit production cost follows from the unit production cost of a Cobb-Douglas production function. The

aggregation results at the highest level of aggregation can be derived in a similar way.

Derivation of equation (18):

This follows from

Z� =

�Z
v2V�

Z
1

��1
v� dv

���1
=

 Z t�D�;t

v�

�
Zv� e

� (v�v� )
� 1
��1

dv

!��1
(57)

= Zv�

 Z t�D�;t

v�

e
�
��1 (v�v� )dv

!��1
=

�
�� 1
�

���1
Zv�

h
e
�
��1 � (t�D�;t�v� ) � 1

i��1
=

�
�� 1
�

���1
Zv� e

� (t�D�;t�v� )
h
1� e�

�
��1 (t�D�;t�v� )

i��1

Derivation of equation (22):

Under the one-sector model assumptions, the price of intermediates produced with capital goods of vintage v and the aggregate

price level equal

Pv;� =
1

Zv;�

�
W

1� �

�1�� �R
�

��
and P =

1

A

�
W

1� �

�1�� �R
�

��
(58)

As a consequence, the relative price of output produced with vintage v is given by the relative TFP level, i.e.

Pv;�

P
= Pv;� =

A

Zv;�
(59)

From the demand function we obtain that the revenue from output produced with capital goods of vintage v is given by

Pv;�Yv;� =

�
P

Pv;�

� 1
��1

Y =

�
Zv;�

A

� 1
��1

Y (60)

The �ow pro�ts that the capital goods producer of vintage v makes are equal to

�v;� =
�

�
Pv;�Yv;� =

�

�

�
Zv;�

A

� 1
��1

Y (61)
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This means that the market value of each of the capital goods suppliers of vintage v, for each of the technologies, at time t

equals the present discounted value of the above �ow pro�ts. That is,

Mv;�;t =

Z 1

t
e�

R s
t rs0ds

0
�vsds (62)

=

�
Zv;�

Zt;�

� 1
��1

�
Zt;�

At

� 1
��1 �

�

Z 1

t
e�

R s
t rs0ds

0
�
At

As

� 1
��1

Ysds (63)

=

�
Zv;�

Zt;�

� 1
��1

�
Zt;�

At

� 1
��1

"
�

�

Z 1

t
e�

R s
t rs0ds

0
�
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� 1
��1 Ys

Yt
ds

#
Yt (64)

=

�
Zv;�

Zt;�

� 1
��1

�
Zt;�

At

� 1
��1

VtYt (65)

Derivation of equilibrium adoption lag, (25):

The optimal adoption of technology vintages implies that the best vintage adopted at each instant satis�es

�v� =Mv� (66)

The adoption costs satisfy

�vt = V (1 + b)

�
Zv;�

Zt;�

� #
��1

Pv;�Yv;� (67)

= V (1 + b)

�
Zv;�

Zt;�

� 1+#
��1

�
Zt;�

At

� 1
��1

Yt

Combining this with the market value of the capital goods supplier of capital good (v; �), we obtain that the vintage that

satis�es (66), solves �
Zv;�

Zt;�

� #
��1

= min

�
1;

1

1 + b

�
Vt

V

��
(68)

such that

lnZv;� � lnZt;� = min
�
0;� � � 1

#

�
ln (1 + b)� lnVt � lnV

	�
(69)

which means that the adoption lag equals

Dt;� = max

�
� � 1
#

�
ln (1 + b)� lnVt � lnV

	
; 0

�
= Dt (70)

and constant across technologies, � .

Best vintage adopted:

In the main text, we present the equilibrium dynamics of the model for the particular case in which, at every instant, there are

some vintages adopted. This does not have to be the case along all equilibrium paths of this economy. Here, in the appendix,

we derive the general equilibrium dynamics of the model and subsequently explain how the one main text is a special case.

For these general dynamics, we de�ne vt as the best vintage adopted until time t. This means that if vt > t �Dt, then,

at instant t, there will be no additional vintages adopted. In the main text, we limited ourselves to the case in which, at any

point in time, vt = t�Dt.

Derivation of aggregate TFP, (26):
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This allows us to write aggregate total factor productivity as

At =

 Z t

�1

Z maxfvt;�g

�
Z

1
��1
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!��1
(71)

= Z0
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which, under the assumption that vt = t�Dt, equals

At = A0e
(�+)(t�Dt) (72)

Derivation of aggregate adoption costs, (27):

We derive the aggregate adoption costs at each instant of time by taking the limit of the adoption cost at a period of time of

length dt starting at time t for dt going to zero. The total adoption costs between time t and t+dt in the economy are given by

�tdt =

vtZ
�1

Z vt+dt

vt
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This is solved most easily in two parts. The integral
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Note that Z vt+dt
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such that
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This means that

lim
dt#0
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Now let�s look at the second term Z vt+dt
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which allows us to write

V (1 + b)Yt

�
1

At

� 1
��1

Z vt+dt

vt

�Z vt+dt

�
Z

1+#
��1
v;� dv
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� #
��1

d� (82)

= V (1 + b)Yt
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Now, we continue by looking atZ vt+dt

vt

�
e
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��1�� e
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�
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��1 +
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d� (83)

=
� � 1
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e
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h
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��1�vt
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But this implies that
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= e

�
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1
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�
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�
�
vt �

�
vt

�
= 0
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Hence, the second part of the integral is zero and the aggregate adoption cost at each instant in time are given by

�t = V (1 + b)
� � 1
�

e
� #
��1 (t�vt)

 
Z0e(+�)vt

At

! 1
��1

Yt
�
vt (85)

= V (1 + b)

�


� � 1

� 1
��1
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1� �
�+

!
e
� #
��1 (t�vt)Yt

�
vt

Equilibrium:

Equilibrium in this case consists of the consumption Euler equation

_Ct

Ct
=

�
�
�� 1
�

Yt

Kt
� � � �

�
(86)

where we have used that the real interest rate is related to the marginal product of capital as follows

rt = �
�� 1
�

Yt

Kt
� � (87)

The resource constraint

Yt = Ct + It + �t (88)

The capital accumulation equation

_Kt = ��Kt + It (89)

The production function

Yt = AtK
�
t (90)

The aggregate TFP equation

At = A0e
(�+)vt (91)

The adoption cost equation

�t = V (1 + b)

�
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� 1
��1
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!
e
� #
��1 (t�vt)Yt

�
vt (92)

The adoption lag equation

Dt = max

�
� � 1
#

�
ln (1 + b)� lnVt � lnV

	
; 0

�
(93)

And the market value equation

Vt =
�

�

Z 1

t
e�

R s
t rs0ds

0
�
At

As

� 1
��1 Ys

Yt
ds (94)

which is best written in changes over time

_Vt

Vt
=

(
�
�� 1
�

Yt

Kt
� � + 1

� � 1
_At

At
�
_Yt

Yt

)
� �

�

1

Vt
(95)

and the technology adoption equation

�
vt =

8><>: max

�
1�

�
Dt; 0

�
if vt = t�Dt

0 if vt > t�Dt
(96)

Because, in the main text we assumed that vt = t�Dt for all t, the dynamic equilibrium equations in the main text are based

on the assumption that along the equilibrium paths considered
�
vt = 1�

�
Dt, and thus that

�
Dt < 1.

Balanced growth path:

We will consider the balanced growth path in this economy in deviation from the trend

At = A0e
(�+)t (97)
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The nine transformed/detrended variables on the balanced growth path are

C�t =
Ct

A
1

1��
t

, Y �t =
Yt

A
1

1��
t

, I�t =
It

A
1

1��
t

, K�
t =

Kt

A
1

1��
t

, ��t =
�t

A
1

1��
t

, and A�t =
At

At
(98)

as well as

Dt, Vt, and v�t = vt � t (99)

Derivation of transformed dynamic system:

The resulting dynamic equations that de�ne the transitional dynamics of the economy around the balanced growth path are

the following Euler equation
_C�t
C�t

=

�
�
�� 1
�

Y �t
K�
t

� � � �
�
� 1

1� �
(�+ ) (100)

The resource constraint

Y �t = C
�
t + I

�
t + �

�
t (101)

The capital accumulation equation
_K�
t

K�
t

= �
�
� +

1

1� �
(�+ )

�
+
I�t
K�
t

(102)

The production function

Y �t = A
�
t (K

�
t )
� (103)

The trend adjusted productivity level

A�t = e
(�+)v�t (104)

The aggregate adoption cost

��t = V (1 + b)

�
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� 1
��1
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�
v
�
t + 1

�
(105)

The adoption lag

Dt = max

�
� � 1
#

�
ln (1 + b)� lnVt + lnV

	
; 0

�
(106)

and the market value transitional equation

_Vt

Vt
=

(�
�
�� 1
�

Y �t
K�
t

� �
�
+

1

� � 1

(
_A�t
A�t

+ (�+ )

)
�
(
_Y �t
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+
1
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(�+ )

))
� �

�

1

Vt
(107)

as well as the adoption law of motion

�
v
�
t =

8><>: max

�
�

�
Dt;�1

�
if v�t = �Dt

�1 if vt > �Dt
(108)

Steady state equations:

The steady state is de�ned by the following equations

0 =

 
�
�� 1
�

Y
�

K
� � � � �

!
� 1

1� �
(�+ ) (109)

The resource constraint

Y
�
= C

�
+ I

�
+ �

�
(110)

The capital accumulation equation

0 = �
�
� +

1

1� �
(�+ )

�
+
I
�

K
� (111)

The production function

Y
�
= A

� �
K
���

(112)
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The trend adjusted productivity level

A
�
= e�(�+)D (113)

The aggregate adoption cost

�
�
= V (1 + b)

�
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��1 v

�
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(114)

The steady state adoption lag, assuming that b � 0, equals

D =
� � 1
#

ln (1 + b) (115)

and the market value transitional equation

0 =

��
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�� 1
�

Y �t
K�
t

� �
�
+

1

� � 1
(�+ )� 1

1� �
(�+ )

�
� �

�

1

V
(116)

as well as

v
�
= �D

Steady state solution:

Combining the Euler equation with the market cap to GDP equation, we obtain that

0 =

�
�+

1

� � 1
(�+ )

�
� �

�

1

V
(117)

Such that the steady state market cap to GDP ratio equals

V =
�

�

1n
�+ 1

��1 (�+ )
o (118)

The steady state trend adjusted level of productivity equals

A
�
=

"�
1

1 + b

� 1
#

#(��1) (�+)


(119)

When we insert this into the Euler equation, we �nd that

0 =

0B@��� 1
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� 1
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#(��1) (�+)
 �

1

K
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(�+ ) (120)

which allows us to solve for the steady state capital stock

K
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# 1
1��

=

266664
� ��1

�

��
1
1+b

� 1
#

�(��1) (�+)


� + �+ 1
1�� (�+ )

377775
1

1��

(121)

Such that
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while the aggregate adoption cost is

�
�
= V (1 + b)
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(124)

and steady state consumption equals

C
�
= Y

� � I� � �� (125)

Note that, for steady state consumption to be positive, we need a restriction on the parameters, such that the total adoption

costs do not fully exhaust productive capacity.

Transitional dynamics:

The next thing is to linearize the transitional dynamics around the steady state. Note that this model has only one state

variable, namely the capital stock Kt. The stock market capitalization to GDP ratio, Vt, is a jump variable and so are the

adoption lag, Dt, the best vintage adopted, vt, and the trend adjusted productivity level, A�t .

The log-linearized equations are the Euler equation

�bC�t = ��� 1� Y
�

K
� bY �t � ��� 1� Y

�

K
� bK�

t (126)

as well as the resource constraint

0 = bY �t � C
�

Y
� bC�t � I

�

Y
� bI�t � �

�

Y
� bY �t (127)

the capital accumulation equation
�bK�
t =

I
�

K
� bI�t � I

�

K
� bK�

t (128)

The production function

0 = bY �t � bA�t � � bK�
t (129)

The trend adjusted productivity level

0 = bA�t � (�+ )�v�t � v�� (130)

The adoption lag equation

0 =
�
Dt �D

�
+
� � 1
#

bVt (131)

The aggregate adoption cost
�
v
�
t =

b��t � #

� � 1

�
v�t � v

�
�
� bY �t (132)

and the market capitalization equation

�bVt = ��� 1
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Y
�

K
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K
� bK�

t +
�+ 

� � 1
�
v�t � (�+ )
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�bK�
t +
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�

1

V
bVt (133)

which simpli�es to
�bVt + �1� 1

� � 1

�
(�+ )

�
v�t + �

�bK�
t = �

�� 1
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Y
�

K
� bY �t � ��� 1� Y
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K
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t +
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�

1

V
bVt (134)

where we have assumed that, all along the equilibrium path v�t = �Dt, such that

�
v
�
t =

8>><>>:
max

(
� ��1

#

�bV t;�1) if v�t = �Dt

�1 if vt > �Dt
(135)

For our examples, we limit ourselves to the part of the transitional path for which v�t = �Dt for all t. On that path, the

transitional dynamics simplify, because then

v�t � v
�
= �

�
Dt �D

�
(136)

and
�
v
�
t = �

�
Dt =

� � 1
#

�bVt (137)
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which allows us to write

0 = bA�t + (�+ ) �Dt �D� (138)

and
� � 1
#

�bV t = b��t + #

� � 1

�
Dt �D

�
� bY �t (139)

as well as �
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1
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Derivation of expression for r� in balanced growth

Let

Q�;t = q�;0 � q� t (141)

then, when we evaluate (10) at the steady-state real interest rate r and the implied steady-state user cost

uc� = (r + �� + q� ) (142)

we obtain

r� =

�
ln

�
�

�� 1

�
+ uc� �

1

uc�
r + q�;0

�
� q� t (143)

= c1 � q� t

Derivation of equation (37)

Denote the adoption time by T� = D� + v� . Consider the technology-speci�c TFP level

Z�t = Zv�

��
�� 1
�

��
e
�
��1 (t�T� ) � 1

����1
(144)

We are interested in the behavior of this TFP for � # 0. In that case, there is no embodied productivity growth and the increase

in productivity after the introduction of the technology is all due to the introduction of an increasing number of varieties over

time.

For this reason, we consider
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�#0
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e
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����1
(145)

which, using de l�Hopital�s rule, can be shown to equal
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(��1) (146)

Taking the �rst order Taylor approximation around  = 0 yields that

Z�t � Zv� (t� T� )
(��1) + (147)
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Hence, for � close to zero,

z�t � zv� + (�� 1) ln (t� T� ) +
�
2
(t� T� ) (148)

Derivation of equation (38)

Combining the four log-linearized equations, we obtain for m� = y� that

y� = y � �

� � 1
p� (149)
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[(�� 1) ln (t� T� )� (1� �) (y � l)]

= �1 + y + �2t+ �3 ((�� 1) ln (t� T� )� (1� �) (y � l)) (150)

Combining the four log-linearized equations, we obtain for m� = k� that

k� = y + ln�� 1

� � 1
p� � r� (151)

=

�
1 +

�

� � 1

�
[ln�� c1] +

1

� � 1

h
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i
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1 +
�

� � 1

�
q� +

1

� � 1
�
2

�
t+

1

� � 1
[(�� 1) ln (t� T� )� (1� �) (y � l)] (153)

= �1 + y + �2t+ �3 ((�� 1) ln (t� T� )� (1� �) (y � l)) (154)

Simulations

In this section of the Appendix we describe �rst the comparative statics of our di¤usion measures with respect to the

adoption lags, D� ; and the initial productivity, Z0� : This should clarify further our identi�cation strategy. Then we explore

the precision of our estimation procedure with the help of a Monte Carlo exercise.

Comparative Statics:

To illustrate the e¤ects of the adoption lags on our measures of adoption, we compute the evolution of k� in two economies

that are in balanced growth and which are identical apart from the fact that one has lower adoption costs for technology �

than the other. As a result, the adoption lag of the former are also smaller. As can be seen in Figure, the adoption curve in

the economy with lower adoption costs has also a smaller slope at any given moment in time. This variation in the slope of the

di¤usion curve is the key in our identi�cation of the adoption lags.

In Figure we consider two economies whose only di¤erence is that one presents a lower initial productivity level for technology

�; Z0� : It is clear from the Figure, that the only e¤ect that Z0� has on the adoption pattern is to shift vertically our adoption

measure. In particular, Z0� does not a¤ect the adoption lag and therefore, it does not a¤ect the curvature of the adoption

measures.

Monte Carlo:

To explore the precision of our estimation procedure, we proceed as follows. First, we take the estimates of the adoption

lags we have obtained for computers. We use these estimates to calibrate the adoption lags in our simulation. Second, we

calibrate,  = 0:01; q� = 0.02, � = 1:3 and � = 1:4: Third, we simulate the log of per-capita income in steady state assuming

a long run growth rate of 0:014=0:7. Finally, we simulate the path for k� using equation (36) for 40 yearly periods since the

invention date.
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Then we apply our estimation procedure to this simulated data set. That is, we �rst estimate equation (38) for the US

using the non-linear least squares estimator. Then, we take the US estimates for �2 and �3 and �x them for the other countries

and reestimate the equation allowing �1 and T� to vary by country. The estimates of the di¤usion lag, D� ; are given by T̂� �v� :

Figure contains the scatter plot of the calibrated lags and their estimates together with a 45 degree line. The main

observation is that the estimates virtually lie in the 45 degree line. The average absolute deviation between the estimates and

the adoption lags we have set in the Monte Carlo is 0.04 (i.e. approximately two weeks). Hence, we conclude that the estimation

strategy provides precise estimates of the adoption lags.
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Table 3: Analysis of variance

Total sum of squares = 1287350, N = 833

Model Country Technology Residual Total

SS e¤ect e¤ect SS SS

Country e¤ect alone 29% 29% 71% 100%

Technology e¤ect 66% 66% 34% 100%

Joint e¤ect 83% 18% 54% 17% 100%

Table 4: Adoption lags for country groups (in deviation from average adoption lag for technology)

Technology Invention USA GBR Japan other Asian Latin Sub-Saharan Other

year (v� ) OECD Tigers America Africa

Steam- and motorships 1788 -93 -76 -5 -50 31 -4 24 36

1 1 1 14 4 10 3 20

Railways - Passengers 1825 -44 5 -36 -27 11 -3 20 13

1 1 1 15 2 10 9 24

Railways - Freight 1825 -35 -15 -22 1 7 25 18

1 1 18 2 3 5 16

Telegraph 1835 -21 -40 -17 -22 18 -5 31 23

1 1 1 17 3 8 2 16

Telephone 1876 -52 -34 -36 -28 25 -15 14 19

1 1 1 17 4 13 10 29

Electricity 1882 -37 -43 -32 -25 10 -4 12 7

1 1 1 15 4 15 24 35

Cars 1885 -31 -31 -16 -13 18 -7 2 11

1 1 1 19 4 13 15 27

Trucks 1885 -20 -10 -12 24 -9 8 13

1 1 18 4 13 7 16

Aviation - Passengers 1903 -8 -13 -8 -5 19 -5 21 3

1 1 1 19 3 7 2 19

Aviation - Freight 1903 -15 -3 -2 18 -7 35 -2

1 1 15 3 2 1 11

Blast Oxygen Steel 1950 -8 -7 -7 -2 8 -1 3

1 1 1 17 2 6 14

PCs 1973 -6 -4 -3 �1 0 2 0 1

1 1 1 19 3 10 8 27

Cellphones 1973 -5 -4 -7 -3 -1 2 2 1

1 1 1 19 4 15 9 35

MRIs 1977 -2 1 -3

1 10 1

Internet 1983 -3 -2 -1 -2 -1 1 1 2

1 1 1 19 4 10 3 21

Note: Adoption lags are listed in deviation from the mean adoption lag for each technology. Hence, the smaller the number, the

earlier the adoption year.
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Table 5: Adoption dates of three recent technologies for EATs

Singapore Hong Kong Korea Taiwan

PCs 1987 1987 1988

Cellphones 1987 1984 1986 1988

Internet 1990 1990 1990 1991
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Figure 1: Fit of model to U.S. time series (part 1)
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Figure 2: Fit of model to U.S. time series (part 2)
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Figure 3: Actual and �tted tonnage of steam and motor ships for four countries

Figure 4: Technology adoption lags decrease for later inventions
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Figure 5: TFP part of technology adoption lags versus real GDP per capita.
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