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1. INTRODUCTION

The credit sector plays a central role in financial markets. Recent events such as the mortgage
crisis, the massive deleveraging of the financial sector, and the credit crunch in both the consumer
and business sectors of the economy indicate that the availability of credit (or lack thereof) can have
first-order effects on asset values and the broader economy. Thus, how the credit market influences
the financial market and asset valuation is of fundamental importance to our understanding of the
overall behavior of the economy.

In this paper we extend the canonical asset-pricing framework (e.g., Lucas (1978) and Cox,
Ingersoll and Ross (1985)) to include a meaningful credit sector. In particular, we consider a model
with heterogenous agents who rely on both the credit and asset markets to achieve optimal risk
sharing. In such a model, the credit sector expands and contracts in response to changes in agents’
risk-sharing needs as the economy evolves. We use the model to examine the role of the credit
market and its connection with asset prices. Especially, we explore how the amount of credit,
determined endogenously in the market, facilitates risk sharing among investors and influences the
behavior of stock and bond prices.

For simplicity, we consider two classes of investors with different levels of risk aversion. We solve
the model in closed form. In particular, we provide explicit solutions for investors’ optimal credit
and asset positions and equilibrium security prices, which allows us to establish direct connections
between activities in the credit market and movements in asset prices as well as real allocations
among investors.

In such an economy, the equilibrium consumption allocation between the two agents, each
being the representative investor of his class, is such that the more-risk-averse agent’s consumption
is less risky than the aggregate endowment (or consumption) while the less-risk-averse agent’s
consumption is more risky. As a result, the more-risk-averse agent ends up with the lion’s share of
total consumption in bad states of the economy (when aggregate consumption is low) while giving
up much of his share in the good states. Such an allocation is equivalent to the more-risk-averse
agent selling a covered “call” option on the aggregate economy to the less-risk-averse agent, shifting
more risk from the former to the latter. These option-like consumption allocations are achieved by
investors’ dynamic replication strategies in the market. Analyzing their activities in the credit and
asset markets and the resulting prices leads to several interesting results.

First, the credit market is essential in facilitating this optimal risk sharing. In particular, the
more-risk-averse agent provides liquidity in the form of credit to the less-risk-averse agent, allowing
him to take on levered positions in the stock and thus bear more risk. In return, the more-risk-
averse agent switches part of his portfolio into debt, receiving a stream of safe cash flows in the
form of interest payments. As a result, the size of the credit market varies drastically with market
“demographics,” i.e., the wealth distribution between the two agents. When the wealth is too
skewed toward one agent, which is the case when the economy is in extremely good or bad states,
the credit market becomes minuscule. This is because the agent with little wealth can no longer
accommodate the borrowing or lending needs of the other agent. For intermediate states of the
economy, however, the size of the credit market becomes substantial, allowing sufficient leverage
for the less-risk-averse agent to take on more risk.

Consequently, the relative size of the credit market, measured by the ratio of the amount
of credit in the market to the value of all assets or the market leverage ratio, exhibit interesting
dynamics. At low levels of aggregate consumption (low states), the market leverage ratio behaves
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procyclically. However, at high levels of aggregate consumption (high states), the market leverage
ratio becomes countercyclical. This implies that no simple rules can be imposed to achieve efficient
level of market leverage ratio. Several recent studies have shown that leverage ratio of the financial
sector, which acts as the major supplier of credit, behaves procyclically (see, e.g., Adrian and Shin
(2008)). Such a behavior is sometimes blamed as a potential cause of financial excess and the
following crisis. However, our analysis shows that the efficient level of leverage ratio should be
procyclical for low and moderate states of the economy but turn countercyclical for high states of
the economy.

Second, we show that the relative size of the credit market is closely related to the behavior of
asset prices. Under calibrated parameter values, we find that stock return volatility comoves with
the market’s leverage ratio, defined as the total amount of credit in the market normalized by the
total size of the market. This is in part because as leverage reaches its maximum, agents’ wealth
and consumption shares become most sensitive to changes of the economy, which leads to more
volatile stock prices. In fact, we show that when both agents are present, despite the expanded
risk-sharing opportunities provided by the credit and stock market, the equilibrium stock price
volatility can be higher than its level when only one of the agents is present. In addition, we find
that when the leverage ratio is maximized, the interest rate becomes more stable, which also leads
to an overall upward-sloping term structure for interest rates.

Moreover, we show that under i.i.d. shocks to the economy, the resulting market demographics,
shaped by agents’ risk-sharing strategies, evolve in non-trivial ways. This leads to rich patterns
in stock and bond returns. For example, the dividend yield, risk premium, and the Sharpe ratio
of the stock typically behave countercyclically. In extremely bad states of the economy, however,
the stock’s risk premium can turn procyclical, becoming negatively correlated with dividend yield.
Under certain parameter values, the dividend yield and the expected return of the stock can both
be nonmonotonic with respect to the level of the market and behave procyclically. Stock returns
also display interesting forms of heteroscedasticity. Return volatility is highly persistent over time,
procyclical in low states of the economy but countercyclical in high states.

A key contribution of the paper is to establish a fundamental link between asset prices and
quantities in the market, especially the amount of credit. The primary empirical implication of
the model is that changes in the size of the credit sector are highly informative about shifts in the
demographics of the market, which, in turn, drive the behavior of asset prices. More specifically,
changes in the size of the credit sector should be linked to time variation in the equity premium.
Thus, information about the size of the credit market may prove useful in forecasting excess stock
returns.

We test this empirical implication using the standard predictive regression framework familiar
from the asset-pricing literature. Specifically, we regress one-year (nonoverlapping) excess returns
on the CRSP value-weighted index for the 1953 to 2006 period on a number of variables that
previous research has suggested may have predictive ability for excess stock returns: lagged stock
returns, the dividend yield, and Lettau and Ludvigson’s (2001) cay measure. We then introduce
several measures of the size of the credit sector into the regression and examine how the predictive
ability of the regression changes.

The results are striking. By themselves, the lagged stock return, dividend yield, and cay
variables result in a predictive regression for the one-year horizon with an adjusted R2 of about
17 percent. When the credit sector variables are introduced, however, the adjusted R2 for the
regression increases to over 40 percent. These levels of predictability for stock returns are far
higher than any previously documented in the literature. These results demonstrate both the
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theoretical and empirical importance of the credit sector in asset pricing.

In summary, by introducing a nontrivial credit sector into the traditional asset-pricing frame-
work, we are able to identify a number of key roles that the availability of credit plays in the
economy. Credit markets are crucial in facilitating risk sharing among diverse agents, and leverag-
ing and deleveraging in financial markets can be understood in the broader context of the dynamic
replication strategies agents use to synthesize “macro options” in the financial markets. Further-
more, the credit market has a unique informational role since its endogenously-determined size is a
reflection of economic fundamentals that affect financial market returns over multi-year horizons.
These results clearly have important implications for current policy debates about the use of pub-
lic sector debt in providing credit to the mortgage, banking, insurance, automobile, student loan,
credit card, etc. industries.

Several papers have considered the impact of heterogeneity in investors’ risk aversion on asset
pricing. Dumas (1989) and Wang (1996) use a two-agent setting to examine how heterogeneity
gives rise to time-varying risk aversion in the aggregate and the resulting behavior of the short-
term interest rates. Further allowing the feature of “catching-up with the Joneses” in investor
preferences in a similar setting, Chan and Kogan (2002) consider the dynamics of stock prices.

Our paper extends this line of research in three important directions. First, while existing
papers focus on the behavior of prices, we focus on both prices and quantities, especially the
interaction between the two. To link prices with quantities is of essential importance to models
with heterogeneous investors—it is where these models can produce new, distinctive, and testable
predictions beyond those from a representative model. After all, in a complete market, there always
exists a representative-agent representation for an economy with heterogeneous agents that yields
identical pricing relations from the fundamentals. Thus, empirical tests of these models have to
turn to the additional predictions, which must concern disaggregated variables such as quantities.
By solving and analyzing in closed-form investors’ portfolio behavior together with prices, we are
able to produce various predictions directly connecting the two. Second, our paper focus on the role
of the credit market, in particular, how the amount of credit is related to the degree of risk sharing
and the resulting stock and bond prices. Moreover, we explore some of the empirical predictions
of the model. Especially, we show that the amount of credit endogenously generated in the market
contains useful information about the risk premium of the stock. In addition, even with limited
degrees of freedom, we are able to produce a rich set of results concerning both the dynamics of
stock and bond prices that are compatible with the empirical findings, at least for some sets of
calibrated parameters.

This paper is organized as follows. Section 2 describes the model. Section 3 presents a single-
agent version of the model as a benchmark for comparison. Section 4 solves the equilibrium for the
two-agent model. Section 5 discusses the equilibrium consumption allocation. Section 6 analyzes
how the credit market helps the two agents achieve the optimal risk sharing. Section 7 examines
the behavior of asset prices in the model and the interactions with borrowing and lending in the
credit market. Section 8 considers the trading activity in the stock market. Section 9 reports our
exploratory empirical work on the link between the size of the credit market and stock market
returns. Section 10 concludes the paper. All proofs are provided in the Appendix.

2. THE MODEL

The primary goal of this paper is to explore the fundamental connection between activities in the
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credit market and asset prices, we are more interested in the qualitative implications of such a
connection rather than quantitative predictions. Thus, we maintain parsimony in the economic
setting we consider for tractability and clarity. We will return to potential enrichments at the end
of this section.

We consider a pure exchange economy similar to Wang (1996). The economy is endowed with
a flow of a single perishable consumption good, which also serves as the numeraire. We denote the
rate of endowment flow as Xt and assume that it follows a geometric Brownian motion,

dXt = μ Xt dt + σ Xt dZt, (1)

whereX0 > 0, μ ≥ 0 and σ > 0 are constants, and Zt is a standard Wiener process.1 The processXt

is positive with probability one and, conditional on Xt, Xt+τ with τ ≥ 0 is lognormally distributed.

There exists a market where shares of the aggregate endowment (the “stock”) are traded. A
share of the stock yields a dividend flow at rate Xt. The total number of shares of the stock in
the economy then equals one. In addition, there exists a “money market” where a locally riskless
security is traded (i.e., investors can borrow from or lend to each other without default). As is
standard, we assume that this riskless security is in zero net supply in the economy. Let Pt denote
the price of the stock and rt the instantaneous riskless interest rate.

Investors in this economy can trade competitively in the securities market and consume the
proceeds. Let Ct be an investor’s consumption rate, Nt his holdings of the stock, and Mt his
holdings of the riskless security. The consumption and trading strategies {Ct, (Nt,Mt)} are adapted
processes satisfying the standard integrability conditions, that is, ∀ T ∈ [0,∞),

∫ T

0

Ct dt < ∞,

∫ T

0

| Mt rt dt + Nt (Xt dt + dPt) | < ∞,

∫ T

0

N 2
t d[Pt] < ∞, (2)

where [Pt] denotes the quadratic variation process of Pt.2 The investor’s wealth process, defined
by Wt = Mt + Nt Pt, must be positive with probability one, and conform to the stochastic
differential equation,

dWt = rt Mt dt + (Xt dt + dPt) Nt − Ct dt. (3)

The requirement that wealth be positive is to rule out arbitrage opportunities (following Dybvig
and Huang (1988)). Let Θ denote the set of consumption/trading strategies that satisfy the above
conditions.

There are two classes of identical investors in the economy, denoted as 1 and 2. Both classes are
initially endowed with only shares of the stock. The initial endowment of shares for the classes of
investors are 1−n and n, respectively. The initial number of shares optimally chosen by each class
at time zero, of course, need not equal their initial endowments. Investors in each class choose their
consumption and investment strategies to maximize their lifetime expected utility. The preferences

1Throughout the paper, equalities or inequalities involving random variables are always in the sense
of almost surely with respect to the underlying probability measure.
2See Karatzas and Shreve (1988) for a discussion of the quadratic variation process of a given
stochastic process.
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of the two classes of investors are

Et

[∫ ∞

0

e−ρτ
C1−γ

1,t+τ

1 − γ
dτ

]
, (4a)

Et

[∫ ∞

0

e−ρτ
C1−2γ

2,t+τ

1 − 2γ
dτ

]
, (4b)

respectively, where γ is a positive constant. C1,t and C2,t denote the total consumption of the first
and second classes of investors, respectively. Thus, the first and second classes of investors have
constant relative risk aversion (CRRA) of γ and 2γ, respectively.

We further impose several conditions on the model’s parameter values. The first condition is
the growth condition,

ρ > max {0, (1 − γ)(μ− 1
2γσ

2), (1 − 2γ)(μ− γσ2)}. (5)

It ensures that investors’ expected utilities are uniformly bounded given the aggregate consumption
process in Equation (1). In addition, we need the following set of conditions√

(μ− 1
2
σ2)2 + 2ρσ2 + (μ− 1

2
σ2) − 2γσ2 > 0, (6a)

√
(μ− 1

2σ
2)2 + 2ρσ2 − (μ− 1

2σ
2) + (γ − 1)σ2 > 0. (6b)

These conditions guarantee that the stock and bond prices behave properly.3

In specifying the securities markets, we have only introduced the stock and the locally riskless
security as traded securities. As will be shown later, the stock and the riskless security are sufficient
to dynamically complete the securities market in the sense of Harrison and Kreps (1979). Arbitrary
consumption plans (satisfying certain integrability conditions) can be financed by continuous trad-
ing in the stock and the riskless security. Allowing additional securities will not affect the nature of
the equilibrium. Thus, in deriving the market equilibrium, we will consider the securities market
as consisting of only the stock and the riskless security. Simple arbitrage arguments can then be
used to price other securities if they exist.

We have assumed that there are only two classes of investors in the economy and that they
behave competitively in the market. Since investors within each class have the same isoelastic
preferences, we can represent each class with a single representative investor who has the same
preferences as the individual investors and the total endowment of each class (see, for example,
Rubinstein (1974)). In deriving the equilibrium, we can then treat the economy as populated with
the two representative investors who behave competitively. In the remainder of the paper, we treat
the two representative investors generically and simply refer to them as the more-risk-averse and
less-risk-averse agents.

Market equilibrium in this economy consists of a pair of price processes {Pt, rt} and the
consumption-trading strategies {Ci,t, (Ni,t,Mi,t), i = 1, 2} such that the agents’ expected lifetime

3Given CRRA preferences and the process for the aggregate endowment, both agents’ marginal
utility and stock payoffs are unbounded from above. Thus, parameter restrictions are needed to
ensure the prices of certain securities such as the stock and bonds are well defined.
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utilities are maximized subject to their respective wealth dynamics in Equation (3), and the secu-
rities markets clear:

N1,t + N2,t = 1, (7a)

M1,t + M2,t = 0. (7b)

Before we move on, a few words are in order about the model. The basic setting is canonical
(see, e.g., Black and Scholes (1973), Cox, Ingersoll and Ross (1985) and Mehra and Prescott
(1985)). By explicitly introducing two classes of investors, the model attempts to capture the
basic elements of the link between credit market and asset valuation, namely, the need to borrow
and lend for risk sharing. The model’s simplicity allows our analysis to be tractable, clean and
to better demonstrate the underlying economic forces driving the credit market and its influence
on asset prices. Naturally, the simplicity also carries limitations. For example, the presence of
only two classes of investors limits the richness in interactions among a diverse investors. The
time-additivity and constant relative risk aversion prevents a closer fit of the model to the data.
They also lead to undesirable asymptotic properties of the economy (see Wang (1996) and Chan
and Kogan (2002)). The single state variable of the economy, the level of aggregate consumption,
also imposes too tight of a connection between different aspects of the market (e.g., instantaneous
changes in all asset prices are perfectly correlated). In addition, the assumption of a complete and
frictionless financial market also simplifies the role of the credit sector. We hope that interesting
results we obtain in the simple model provides a strong motivation to consider the role of the credit
market in more general settings.

3. THE SINGLE-AGENT EQUILIBRIUM

Before presenting the results for the two-agent model, we first review the trading and asset-pricing
implications of the familiar single-representative-agent model in our setting. In fact, as shown by
Stapleton and Subrahmanyam (1990), this is the well-known situation considered by Black and
Scholes (1973). The results from the single-agent model then provide a benchmark for comparison
to those from the two-agent model.

The single-agent model is nested within the two-agent model by assuming that only one of the
two agents, say the less-risk-averse agent, is present in the market. Thus, the less-risk-averse agent
is initially endowed with all of the shares of stock in the economy, 1 − n = 1 or n = 0.4 The agent
maximizes his expected lifetime utility through consumption and investment choices {Ct, (Nt,Mt)}.
Here, for brevity, we have omitted the subscript i in denoting agent i. In equilibrium, however,
the agent’s consumption Ct must equal the aggregate amount of dividends Xt. Similarly, market
clearing implies that the agent holds all of the shares of the stock and does not borrow or lend;
Nt = 1 and Mt = 0. This latter feature makes the trading implications of the single-agent model
simple as there is no trading in equilibrium and the agent never changes the number of shares of
the stock or the riskless asset in his portfolio.

The equilibrium price St of a security with payoff {Ds, s ≥ 0} can be obtained directly from

4The parallel case where the more-risk-averse agent is endowed with all the shares of stock is given
by simply replacing γ with 2γ throughout all of the formulas in this section.
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the Euler equation,

St = Et

[∫ ∞

0

e−ρτ

(
Ct+τ

Ct

)−γ

Dt+τ dτ

]
= = Et

[∫ ∞

0

e−ρτ

(
Xt+τ

Xt

)−γ

Dt+τ dτ

]
, (8)

where the second equality follows from Ct = Xt. We have the following result:

Lemma 1. In the single agent economy, the equilibrium stock price is given by

Pt =
1

ρ− κ
Xt, (9)

where
κ = (1 − γ)(μ− 1

2
σ2) + 1

2
(1 − γ)2σ2, (10)

and the riskless interest rate is given by

rt = ρ + μγ − 1
2
γ(1 + γ)σ2, (11)

which is a constant.

In this economy, the price-dividend ratio, defined as

Yt = Pt/Xt, (12)

is constant in the single-agent economy, i.e., Yt = 1/(ρ− κ). Its inverse yt = Xt/Pt is simply the
dividend yield of the stock, which is ρ− κ.

An application of Itô’s Lemma to Equation (9) gives the dynamics for the stock price,

dPt = Pt (μ dt + σ dZt). (13)

Thus, the stock price inherits the geometric Brownian motion dynamics of the underlying dividend
process. In this single-agent economy, the agent’s wealth Wt equals the value of his stock holdings,
Wt = Mt +NtPt = Pt.

Clearly, the single-agent market exhibits some simple properties. For example, the interest
rate is constant and the stock returns are i.i.d. In particular, the expected return on the stock is
μ+ yt = μ+ ρ− κ and its return volatility is σ, both constant over time. Moreover, stock returns
are serially uncorrelated. As we see below, these are no longer true when both agents are present
in the market.

4. THE TWO-AGENT EQUILIBRIUM

In this section, we present the closed-form solutions for equilibrium consumption, asset prices, and
portfolio choices for the two-agent model. We explore the economic intuition and implications of
these results more fully in the subsequent sections, and provide the proofs and derivations in the
Appendix.
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The equilibrium is derived in three steps. First, relying on the complete securities market in
our model, we solve for the equilibrium allocation of consumption between the two agents from its
Pareto optimality. Second, using the Euler equation for the agents we compute the equilibrium
stock price and interest rate that support the equilibrium allocation. Finally, by analyzing the
agents’ portfolio policies financing their consumption, we obtain their equilibrium holdings of the
stock and the riskless security.

4.1 Consumption

In the two-agent economy, the sum of the agents’ consumption streams must equal the aggregate
dividends, i.e. C1,t + C2,t = Xt. An allocation C1,t, C2,t is Pareto optimal if, and only if, there
exists α ∈ [0, 1] such that C1,t, C2,t solves the problem

max
C1,t+C2,t≤Xt

E0

[∫ ∞

0

e−ρt

[
α
C1−γ

1,t

1− γ
+ (1 − α)

C1−2γ
2,t

1− 2γ

]
dt

]
. (14)

The solution is given in the following proposition:

Proposition 1. In the two-agent economy, the equilibrium consumption allocation is given by

C1,t = Xt − 2
b

(√
1 + bXt − 1

)
, C2,t = Xt − C1,t =

2
b

(√
1 + bXt − 1

)
, (15)

where b = 4( α
1−α )1/γ.

To simplify notation, we denote the more-risk-averse agent’s consumption simply as Ct. Thus, in
equilibrium, the less-risk-averse agent’s consumption is Xt − Ct.

The demographics of the market are characterized by the relative consumption levels of the
two agents. Let st denote the less-risk-averse agent’s share of total consumption. We have

st =
Xt −Ct

Xt
=

√
1 + bXt − 1√
1 + bXt + 1

. (16)

As we will see below, st is an important variable in characterizing the behavior of the economy.
We return to analyze its properties in Section 5.

4.2 Asset Prices

Given the equilibrium consumption allocation, we now compute the stock price and the interest
rate that support the equilibrium. The Euler equation for the more-risk-averse agent leads to the
following equation for the price of a security with payoff {Ds, s ≥ 0}:

St = Et

[∫ ∞

0

e−ρτ

(
Ct+τ

Ct

)−2γ

Dt+τ dτ

]
, (17)

where Ct is given into Equation (17). The equilibrium stock price and riskless interest rate is given
in closed form in the following proposition:
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Proposition 2. In equilibrium, the price-dividend ratio of the stock is

Pt

Xt
= Yt = a1 − a2 st F (1,−θ, 3 + θ − 2γ; st) − a3 (1− st) F (1, λ, 2γ+ 2λ; 1− st), (18)

where F (a, b, c; z) is the standard hypergeometric function,

θ =
ψ + (μ− 1

2σ
2)

σ2
, λ =

ψ − (μ− 1
2σ

2)
σ2

, ψ =
√

(μ− 1
2
σ2)2 + 2ρσ2, (19)

and

a1 =
θ + λ− γ

ψ(γ + λ− 1)(1 + θ − 2γ)
, (20a)

a2 =
2γ

ψ(1 + θ − 2γ)(2 + θ − 2γ)
, (20b)

a3 =
γ

ψ(γ + λ− 1)(2γ + 2λ− 1)
. (20c)

The equilibrium riskless rate is

rt = ρ +
2μγ

(1 + st)
− γ(2γ+ 3)σ2

(1 + st)2
+

2γσ2

(1 + st)3
. (21)

4.3 Optimal Leverage and Stock Holding

In equilibrium, the more-risk-averse agent’s wealthWt is simply the present value of his consumption
stream, which is given as follows:

Lemma 2. The wealth of the more-risk-averse agent is

Wt

Xt
= wt = b1 (1 − st) − b2 st(1− st) F (1, 1− θ, 3 + θ − 2γ; st)

+ b3 st(1− st) F (1, 1 + λ, 2γ+ 2λ; 1− st), (22)

where

b1 =
θ + λ

ψ(2γ + λ− 1)(1 + θ − 2γ)
, (23a)

b2 =
2γ − 1

ψ(1 + θ − 2γ)(2 + θ − 2γ)
, (23b)

b3 =
2γ − 1

ψ(2γ + λ− 1)(2γ + 2λ− 1)
. (23c)

The wealth of the less-risk-averse agent is given by Pt −Wt.

From the wealth of the more-risk-averse agent, we can derive his optimal holdings of the stock
and the riskless security, denoted by Nt and Mt, respectively. Market clearing then implies that
the less-risk-averse agent will hold 1−Nt shares of the stock and −Mt units of the riskless security.
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By definition, the more-risk-averse agent’s wealth equals the value of his portfolio holdings,
Wt = Mt+NtPt. Following Cox and Huang (1989) and Wang (1996), this implies that dWt = NtdPt

after imposing the self-financing constraint dMt + PtdNt = 0. Thus, the ratio of the diffusion
coefficients in the dynamics of Wt and Pt can be used to solve for Nt. Once Nt is determined, Mt

can be obtained directly from the expression for wealth. Consequently, we have

Proposition 3. The optimal portfolio holdings for the more-risk-averse agent are

Nt =
Ψt

Φt
, (24a)

Mt = Wt −NtPt, (24b)

where

Ψt =
(1 + st)
st(1 − st)

wt − b1

− b2 (1−2st) F (1, 1− θ, 3 + θ − 2γ; st)− b2 st(1−st) F ′(1, 1− θ, 3 + θ − 2γ; st)
+ b3 (1−2st) F (1, 1 + λ, 2γ + 2λ; 1−st) − b3 st(1−st) F ′(1, 1 + λ, 2γ + 2λ; 1−st),(25a)

Φt =
(1 + st)
st(1 − st)

1
yt

− a2 F (1,−θ, 3 + θ − 2γ; st) − a2 st F
′(1,−θ, 3 + θ − 2γ; st)

+ a3 F (1, λ, 2γ+ 2λ; 1−st) + a3 (1−st) F ′(1, λ, 2γ+ 2λ; 1−st), (25b)

yt is the dividend yield (yt = 1/Yt), and F ′(a, b, c; z) = (ab/c)F (a+ 1, b+ 1, c+ 1, z).

5. CONSUMPTION ALLOCATION

From the market equilibrium given in the previous section, we now examine the allocation of
consumption (and risk) between the two agents, how this allocation is achieved through their
trading in the stock and the credit market, and how their trading activity determines the behavior
of asset prices.

When only a single agent is present, he consumes the aggregate endowment Xt. When two
agents are present, they have to share the aggregate endowment. Given the difference in their
preferences, each will not simply share a constant portion of the aggregate endowment. From
Equation (15), the equilibrium allocation is such that the more-risk-averse agent consumes the
lion’s share in bad states, i.e., states with low aggregate endowment, and the less-risk-averse agent
consumes the major share in the good states.

In illustrating the results of the paper, we will use a baseline calibration throughout to make
the results easier to compare. Specifically, we assume that the expected dividend growth rate
μ is 0.03 and that the volatility of dividend growth σ is 0.12. These values are consistent with
the historical properties of imputed corporate dividends (for example, see Longstaff and Piazzesi
(2004)). We also assume that the subjective time discount rate ρ is 0.01 and the less-risk-averse
agent has logarithmic preferences, i.e., γ = 1. As we will see in Section 7, these parameter values
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lead to asset prices that are broadly compatible with what we see in the data. For example, the
interest rate ranges between 2.56 and 2.68 percent, the stock risk premium ranges between 1.4 and
3.0 percent, stock return volatility ranges between 12 and 14 percent, and the term premium of
interest rates is close to zero. Finally, we assume that the initial dividend level X0 and the share
allocation between the two agents n are such that α = 1

2
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Figure 1. Aggregate consumption and agents’ consumption shares. The left
panel plots the agents’ consumption shares as functions of aggregate consumption, the
dashed line for the less-risk-averse agent and the solid line for the more-risk-averse agent,
and the right panel plots aggregate consumption as a function of the less-risk-averse agent’s
consumption share st. The parameters are at the benchmark values: μ = 0.03, σ = 0.12,
ρ = 0.01, γ = 1.00, and α = 0.50.

Figure 1 plots the two agents’ shares of aggregate consumption for different levels of aggregate
consumption (endowment). Also plotted is the aggregate consumption Xt as a function of the
less-risk-averse agent’s share st. The left panel of Figure 1 shows that at a given time t, the
share of the less-risk-averse agent’s consumption st monotonically increases with the aggregate
level of consumption Xt. It starts at zero as Xt is close to zero, but increases as Xt increases and
approaches one as Xt goes to infinity. This consumption allocation across different states of the
economy is intuitive. As the aggregate endowment decreases, the marginal utility of the more-risk-
averse agent increases faster than that of the less-risk-averse agent. On the other hand, as the
aggregate endowment increases, the marginal utility of the more-risk-averse agent decreases faster
than that of the less-risk-averse agent. The optimal consumption is reached when the marginal
utilities of the two agents are equal. This is achieved when the more-risk-averse agent consumes
a relatively larger share in the bad states by claiming a relative smaller share in the good states.
The right panel of Figure 1 shows that aggregate consumption Xt is very small in absolute value
in the states when the more-risk-averse agent dominates the economy (when st is small), while the
opposite is true when the less-risk-averse agent dominates the economy.

Over time, as Xt changes, so does st. In particular, st evolves as follows

dst = μs,t dt + σs,t dZt, (26)
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where

μs,t =
st(1− st)

1 + st

[
(μ− σ2) +

1
(1 + st)2

σ2

]
, (27a)

σs,t =
st(1− st)

1 + st
σ. (27b)

One immediate observation is that in addition to itself, the dynamics of st depend only on the
parameters governing the aggregate consumption process, i.e., μ and σ; the dynamics do not depend
on the initial condition of the economy (i.e., X0 and n) which only fixes the initial value of st.
More importantly, the dynamics of st do not depend on the parameters concerning the agents’
preferences, i.e., ρ and γ. They do, however, depend on the fact that the ratio between the two
agents’ relative risk aversion is two. This property comes from the fact that given the dynamics of
total consumption, the dynamics of st are determined by the sharing rule between the two agents.
Given that the two agents have constant relative risk aversion and the same time discount rate ρ,
the sharing rule depends only on the ratio of their relative risk aversion coefficients. In our model,
this ratio is two.

The drift and volatility of st imply that it follows a process similar to the class of Wright-
Fisher diffusions used in genetics and many other contexts (see, for example, Karlin and Taylor
(1981)). The drift of this process is a ratio of simple polynomials. Depending on parameter values,
the drift can be uniformly positive (when μ > 3

4
σ2), uniformly negative (when μ < 0), or can be

positive for values of st below some threshold and negative for values greater than that threshold
(when 0 < μ < 3

4
σ2). This latter situation implies a certain type of mean-reverting behavior for

the process. However, the process does not have a stationary distribution in this situation. The
volatility of the process takes its maximum value at st =

√
2 − 1.
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Figure 2. Dynamics of the consumption share of the less-risk-averse agent.
The left panel plots the drift of the consumption share of the less-risk-averse agent μs,t

as a function of st and the right panel plots the volatility of the consumption share σs,t.
The parameters are at the benchmark values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

Figure 2 plots both the drift (the left panel) and the volatility of st (the right panel) for the baseline
parameter values. Clearly, in this case where μ − 3

4
σ2 = 0.03 − 3

4
(0.12)2 = 0.0192 > 0, the drift

of st is always positive, indicating that the less-risk-averse agent is steadily gaining share of the
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economy. The drift increases steeply with st for small values of st. It peaks as st approaches 0.4
and then declines quickly. The volatility of st has a simple humped shape. It is zero at the two
extreme ends, i.e., when st is equal to zero or one, when one of the agents owns the whole economy.
It peaks when st is around 0.4. As we will see below, the dynamics of st are very much related to
the risk sharing between the two agents and the resulting market behavior.

6. RISK SHARING AND THE CREDIT MARKET

The consumption share of the two agents, as shown in Figure 1, reveals a striking pattern. The
consumption of the less-risk-averse agent is a convex function of aggregate consumption, while
that of the more-risk-averse agent is a concave function. This represents the optimal risk sharing
between the two agents given their preferences. In fact, the more-risk-averse agent shifts a large
part of the aggregate risk, given by the uncertainty in Xt, to the less-risk-averse agent. As a result,
the risk profile of the less-risk-averse agent actually exceeds that of the overall economy.

6.1 Leverage and Risk Sharing

Risk sharing is achieved through the two agents’ trading in the securities market. In particular, it
is facilitated by the lending of the more-risk-averse agent in the credit market to the less-risk-averse
agent. As a result, the more-risk-averse agent is able to switch his stock holdings into riskless debt,
thus to maintain a less-risky wealth profile. This is accommodated by the less-risk-averse agent,
who issues debt to the more-risk-averse agent to finance his own levered purchase of additional
stock shares.

Thus, the credit market plays a critical role in allowing optimal risk sharing among agents
with different risk preferences. In the absence of a credit market, each of the agents would have to
hold the same portfolio consisting of a 100 percent weight in the stock. The presence of the credit
market allows agents to modify the risk profile of their portfolios by borrowing and lending and
thus allocate risk optimally.

Figure 3 plots the debt and stock shares held by the more-risk-averse agent as a function of
st. The left panel shows Mt, the total amount of “short-term” debt, in the form of instantaneous
credit, held by the more-risk-averse agent. As we can see, for all possible states of the economy
(i.e., the whole range of st), Mt is positive. That is, the more-risk-averse agent is always the lender
in the market, lending money to the less-risk-averse agent in exchange for safe future payoffs. Of
course, the bond position of the less-risk-averse agent is simply −Mt, which is always negative.

At low levels of Xt, the consumption share of the less-risk-averse agent st is close to zero.
In these states, the more-risk-averse agent owns most of the economy and consumes most of the
aggregate endowment. As the left panel of Figure 3 shows, the level of debt is small in these states
as the less-risk-averse agent has little wealth to use as collateral in borrowing. As Xt increases,
the overall wealth of the economy increases. Moreover, the less-risk-averse agent also has more
wealth. Consequently, he can take on more debt by issuing more bonds to the more-risk-averse
agent. Indeed, we see that Mt rises quickly with Xt or equivalently st.

While the increase in the lending of the more-risk-averse agent represents a shift in his wealth
from the stock to bond, the increase in the borrowing of the less-risk-averse agent is used to
increase his stock positions. The right panel of Figure 3 plots the stock shares held by the more-
risk-averse agent Nt. Since the total number of stock shares is normalized to one, the number
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Figure 3. Bond and stock holdings of the more-risk-averse agent. The left panel
plots the amount of riskless debt the more-risk-averse agent (agent two) holds as a function
of st and the right plots the number of stock shares he holds. The parameters are at the
benchmark values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

of shares held by the less-risk-averse agent is simply 1 − Nt. Clearly, at low levels of Xt, the
more-risk-averse agent holds most of the stock. In fact, as mentioned above, he owns most of the
economy and consumes the lion’s share of the aggregate consumption. As Xt increases, however,
his stock holding monotonically decreases. When Xt approaches infinity, st approaches one (the
less-risk-averse agent consumes most of the economy), and Nt approaches zero. In those states, the
more-risk-averse agent holds most of his wealth bonds.

As shown in Cox and Huang (1989), an agent’s portfolio rebalancing can be interpreted as the
dynamic trading strategy that generates “derivative” contracts that deliver the optimal consump-
tion for each date and state. From this perspective, the portfolio strategy of the more-risk-averse
agent, which sells stock shares for bonds as the stock price rises and buys when the stock price
falls, is exactly to achieve the negative convexity in his desired consumption profile. Thus, through
the dynamic rebalancing of his stock and bond positions, he is synthetically “selling” call options
to the less-risk-averse agent. In the vocabulary of the options market, the risk-averse agent is short
“gamma,” while the less-risk-averse agent is long “gamma.”

Finding that the risk-averse agent sells options to the less-risk-averse agent may seem coun-
terintuitive at first. After all, selling options is generally viewed as a highly risky enterprise. In
this equilibrium, however, the more-risk-averse agent is not simply selling options outright with a
potentially unbounded downside. Rather, the risk-averse agent follows a much more conservative
“covered call” strategy by selling options against an underlying stock position. Obviously, the
credit market is crucial to allow him to achieve this through his portfolio strategy.

6.2 Optimal Portfolio Weights

In addition to describing the agents’ stock and bond holdings in absolute terms, we also examine
them in relative terms. In particular, we consider the relative weight of stock in both agents’
portfolios wi,t, where

w1,t =
(1 −Nt)Pt

(1 −Nt)Pt −Mt
, w2,t =

NtPt

NtPt +Mt
. (28)
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The relative weight of bond in agent i’s portfolio is simply 1−wi,t. Figure 4 plots w1,t and w2,t as
a function of st.
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Figure 4. Weight of stock in agents’ portfolios. The left panel plots the weight
of stock in the portfolio of the less-risk-averse agent (agent one) against st, and the right
panel plots that of the more-risk-averse agent (agent two). The parameters are at the
benchmark values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

Facilitated by the credit market and the possibility of leverage, the difference between the two
agents’ portfolios is striking. For the less-risk-averse agent, the weight of stock in his portfolio
is always above one, reflecting the fact that he is always levered. For small values of st, which
corresponds to low levels of Xt or bad states of the economy, the stock weight in his portfolio is
close to two. In other words, he pledges all his wealth as collateral to borrow. In these states, it is
the more-risk-averse agent who is more wealthy, and he can fully accommodate the leverage needs
of the less-risk-averse agent. From Figure 3, we see that the absolute size of debt is small for small
st. But it is a large percentage of the less-risk-averse agent’s portfolio. As st increases, the economy
moves into good states, in which the less-risk-averse agent gains a larger share of the total wealth
(and consumption). Despite his preference for leverage, less debt would be available as the wealth
share of the more-risk-averse agent dwindles. Consequently, he is forced to reduce leverage and the
weight of the stock in his portfolio decreases. When st approaches one, the less-risk-averse agent
owns most of the economy, which is the stock. The weight of the stock in his portfolio approaches
one.

For the more-risk-averse agent, the weight of stock in his portfolio is always between zero and
one since he holds part of his portfolio in the riskless bond. For small values of st (i.e., Xt), he owns
most of the economy and thus most of the stock. The debt he holds is only a trivial part of his
total portfolio. In these bad states of the economy, the opportunity for risk sharing is very limited
and w2,t is close to one. As st increases, his share of the total economy decreases. He shifts to safer
asset allocations, investing a smaller fraction of his wealth in the stock while investing more in the
bond. When st approaches one, the less-risk-averse agent dominates the economy. In these states,
w2,t approaches zero and the more-risk-averse agent ends up with all his portfolio in the bond. In
other words, he completely avoids the risk of the economy.

The above analysis reveals the central role the credit market plays. The risk sharing between
the two agents is achieved by allowing the less-risk-averse agent to bear a larger share of the
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aggregate risk, which is fully reflected in the risk of the stock market. Such a shift is facilitated
by the credit market, which allows the less-risk-averse agent to borrow capital and take on levered
positions in the stock. The amount he can borrow, however, depends on the amount of collateral,
i.e., wealth, he has. In the bad states (i.e., st is close to zero), he has less wealth as collateral
and risk sharing is limited. In the good states (i.e., st is close to one), the less-risk-averse agent
controls most of the wealth and thus has abundant collateral. In these states, the risk sharing is
more complete as he bears all the risk of the economy and the more-risk-averse agent’s wealth is
all in bonds.

6.3 The Market-Leverage Ratio

Given the importance of the credit market, we now consider the ratio of aggregate credit in the
market to the total value of assets held by the agents. This ratio, which we denote the market-
leverage ratio, is simply Mt/Pt. Intuition suggests that there are some common-sense bounds on
the values that this ratio can take in equilibrium. In particular, the market-leverage ratio should
be bounded below by zero given the agents’ risk-sharing incentives. On the other hand, if the
interest-rate payments on the debt exceed the dividend payments received by the less-risk-averse
agent, he would only be able to avoid default by borrowing further. Even this expedient would
appear to have a limit since the total debt payments made by the less-risk-averse agent could not
exceed the aggregate dividend payments generated by the stock, the positive-net-supply asset in
the economy.
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Figure 5. Market-leverage ratio. The figure plots the ratio of the amount of debt
outstanding to the total value of the assets in the economy for different values of st. The
parameters are at the benchmark values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

Figure 5 plots the market-leverage ratio as a function of st. As expected, the market-leverage
ratio approaches zero as st approaches either zero or one. This follows simply because the aggregate
amount of debt in the market depends on the relative size of each agent in the market. If there is
effectively only one agent in the market, little or no debt can occur. For intermediate values of st,
however, the amount of debt in the economy can be substantial. The maximum market-leverage
ratio of close to 16 percent occurs around st = 0.25.

The maximum market-leverage ratio implied by the model is very consistent with the U.S.
historical experience. Using the Federal Reserve’s Z.1 statistical data for the flow of funds accounts
of the United States from 1953 to 2006, we find that the market-leverage ratio ranges from a low
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of about 8 percent in 1953, to a high of slightly more than 19 percent in 2005. This historical high
of 19 percent agrees closely with maximum value implied by our model.

Comparing the market-leverage ratio plotted in Figure 5 for different states of the economy,
which are fully characterized by st, with the volatility of the less-risk-averse agent’s consumption
share plotted in Figure 2 (the right panel), we find a striking similarity between the two. In
particular, the market-leverage ratio peaks at around 0.25 and so does the volatility of st (the
exact locations of their maxima are slightly different). This is not surprising. Given that optimal
risk sharing induces the less-risk-averse agent to load up on risk by leveraging, the amount of risk
he bears reaches a maximum with the amount of leverage. At this point, his wealth as well as
consumption are also most volatile.

7. ASSET PRICES

We now examine how risk sharing between the two agents influences the behavior of asset prices.
Especially, we focus on the role of the credit market and its impact on asset prices.

To put the asset-pricing implications of leverage and risk sharing into perspective, recall that
the interest rate is constant and stock returns are i.i.d. through time in the single-agent economy.
In contrast, the moments of returns are generally time varying in the two-agent economy. From
Equations (18) and (21), we see that both rt and yt (the dividend yield) vary with st. We will first
examine the behavior of the stock price and then the properties of interest rates.

7.1 The Stock Price and Its Dynamics

Figure 6 plots the price-dividend ratio Yt of the stock (the left panel) and its dividend yield yt = 1/Yt

(the right panel) as functions of st for the baseline parameter values. The left panel shows that
the valuation ratio for dividends increases in a slightly nonlinear way as the economy expands.
Conversely, the dividend yield decreases with st in this case. In other words, the dividend yield
behaves countercyclically—it increases when the economy expands and decreases when the economy
shrinks.

Since Pt = XtYt where Yt is the price-dividend ratio given in Equation (18), Itô’s Lemma
implies that stock price dynamics dPt/Pt can be expressed in terms of dXt/Xt and dYt/Yt. From
Equation (1), however, the moments of the dividend process dXt/Xt are constant since the dividend
follows an i.i.d. geometric Brownian motion. As a result, any variation in the return moments is
due entirely to variation in the valuation ratio Yt, which is fully determined by st.

Given Equation (18) and the dynamics of st in Equations (26-27), the stock price dynamics is
given in the following proposition:

Proposition 4. The equilibrium stock price dynamics is given by

dPt

Pt
=

(
φt μs,t + 1

2 ξt σ
2
s,t

)
dt + φt σs,t dZt, (29)
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where

φt = (1 + st)/[st(1− st)]
− a2 yt F (1,−θ, 3 + θ − 2γ; st) − a2 yt st F

′(1,−θ, 3 + θ − 2γ; st)
+ a3 yt F (1, λ, 2γ+ 2λ; 1− st) + a3 yt (1 − st) F ′(1, λ, 2γ+ 2λ; 1− st), (30a)

ξt = 2 φt (1 + st)/[st(1− st)] − 2/[s2t(1 − st)2]
− 2a2 yt F

′(1,−θ, 3 + θ − 2γ; st) − a2 yt st F
′′(1,−θ, 3 + θ − 2γ; st)

− 2a3 yt F
′(1, λ, 2γ+ 2λ; 1− st) − a3 yt (1− st) F ′′(1, λ, 2γ+ 2λ; 1− st), (30b)

and the derivatives F ′ and F ′′ are given by the simple differentiation formula for hypergeometric
functions, F ′(a, b, c; z) = (ab/c)F (a+ 1, b+ 1, c+ 1; z).

Although there are numerous terms in the drift and volatility terms, it is obvious that the stock
price dynamics are explicitly a function of st, the market demographics.
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Figure 6. Stock price-dividend ratio and dividend yield. The left panel plots the
price-dividend ratio as a function of st and the right panel plots the stock’s dividend yield.
The parameters are at the benchmark values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

7.2 The Expected Return and Return Volatility of the Stock

Given the stock price dynamics, we now analyze the behavior of stock returns, especially their
conditional distributions. Since the stock price follows a diffusion process and the dividend yield
follows a smooth process, the instantaneous stock returns are conditionally normal. Thus, we need
only to focus on their first two moments, the expected return and return volatility.

The expected return for the stock, which we denote by qt, is just the sum of the dividend yield
yt and the expected price appreciation E[dPt/Pt]. From Equation (29), this can be expressed as

qt = yt + φt μs,t + 1
2 ξt σ

2
s,t. (31)

Given the smooth nature of the dividend, stock return volatility comes solely from price volatility.
From Equations (29-30), it is given by σt = |φt σs,t|. For the baseline parameters, Figure 7 plots
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Figure 7. Expected return and volatility of the stock. The left panel plots the
expected return of the stock as a function of st and the right panel plots the stock return
volatility. The parameters are at the benchmark values: μ = 0.03, σ = 0.12, ρ = 0.01,
and γ = 1.00.

both the expected return of the stock (the left panel) and its return volatility (the right panel) as
a function of st.

For most values of st, in particular for st greater than 0.05, the stock’s expected return decreases
with st. That is, the expected return behaves in a countercyclical manner for most of the states
of the economy. This behavior also implies a negative correlation between the expected return
and the return of the stock itself. However, this pattern is not uniform. When the economy falls
into very low consumption states (when st falls below 0.05), the expected stock return can behave
procyclically—it comoves with the overall level of the market. The possibility of this rich relation
between the stock’s expected return and price levels should be taken into account when analyzing
the empirical behavior of these two variables.

Next, we examine stock return volatility and how it varies with the state of the economy.
Recall that in the single-agent economy, the volatility of stock returns is just the volatility of the
dividend process σ. This is true independent of the level of risk aversion of the representative single
agent. In contrast, the stock return volatility can differ significantly from the volatility of dividends
when both agents are present in the market.

The right panel of Figure 7 plots the volatility of stock returns as a function of st. As ex-
pected, stock return volatility approaches the volatility of the dividend process, which is 0.12, as
st approaches either of the limiting values of zero or one. For all other values of st, however, the
volatility of stock returns diverges from the volatility of dividends. In fact, in this case, stock
return volatility is always higher than the dividend volatility of 0.12. This implies that when both
agents are present in the market and have more risk-sharing, the stock price actually becomes more
volatile than if only one of them is present. The volatility of stock returns reaches its maximum of
over 0.14 when st is between 0.20 and 0.30.

The nonmonotonic behavior of stock return volatility with st (and thus Xt) implies a rich
pattern of heteroscedasticity for stock returns. In particular, in the region of st exceeding 0.25,
stock return volatility is negatively correlated with changes in the stock price. That is, the volatility
increases as the market drops. This is compatible with the empirical relation between stock market
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returns and return volatility (see, e.g., Black (1976) and Nelson (1991)). Figure 5 also shows,
however, that for small values of st (less than 0.25), i.e., when the economy is in low consumption
states, the correlation between stock volatility and return can be positive.

Comparing the behavior of stock return volatility with that of the market-leverage ratio shown
in Figure 5, we see that the two are closely related. Both exhibit a unimodal, humped-shaped
pattern, reaching their maxima when st is roughly 0.25. In this case, stock return volatility moves
together with the market-leverage ratio. Such a strong positive correlation between these two
variables suggests that even though leverage helps to achieve optimal risk sharing overall, it can
substantially increase the local volatility of the stock market.

7.3 The Risk Premium and Sharpe Ratio of the Stock

We now examine the expected excess return or (instantaneous) risk premium on the stock, which
is defined by

πt = qt − rt, (32)

where rt is the instantaneous interest rate, and its Sharpe ratio πt/σt. Figure 8 plots these two
quantities as functions of st. As we see from the left panel, for a wide range of st, in particular,
when st > 0.05, the expected excess return decreases with the level of the market. This suggests
that the time variation of the risk premium is also countercyclical. Comparing the behavior of
the expected excess return of the stock and that of the dividend yield, we see a positive relation
between the two. This is consistent with the empirical evidence on the positive correlation between
dividend yield and future stock returns (see Fama and French (1988) and Campbell and Shiller
(1988a, b), among others).
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Figure 8. Expected excess return and Sharpe ratio of the stock. The left panel
plots the expected excess return of the stock as a function of st and the right panel plots
the Sharpe ratio. The parameters are at the baseline values: μ = 0.03, σ = 0.12, ρ = 0.01,
and γ = 1.00.

From Figure 8 we also see that the expected excess return on the stock is not uniformly
countercyclical. For states with very low consumption levels, it can be positively correlated with
changes in the stock price. In other words, it can turn procyclical in these states. Our results
clearly suggest that the relation between the risk premium and the price level of the stock market
can be quite complex.
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The right panel of Figure 8 further shows that in contrast to the more-complex behavior of
the expected excess return, the Sharpe ratio of the stock exhibits a simple countercyclical pattern.
Among the parameter values we have explored, the countercyclical behavior of the Sharpe ratio
seems to be quite robust. This is consistent with the empirical evidence presented by Ferson and
Harvey (1991), among others.

7.4 Further Discussions on Stock Returns

Under the baseline parameter values our model produces relatively simple patterns for stock price
behavior that are largely compatible with the empirical observations. However, these patterns are
by no means unique. In fact, under different parameter values our model can lead to a variety of
behaviors for stock return dynamics.

Instead of presenting an extensive analysis of various possible return patterns in our model,
we consider another set of parameter values, which are also reasonable in matching the data, and
show that they can lead to quite different properties of the equilibrium. Our purpose here is merely
to illustrate the richness in the model’s predictions. In particular, we let the growth rate of the
aggregate dividend μ be 0.02 and its volatility σ be 0.15. Moreover, we let the time discount rate
ρ be 0.04 and the relative risk aversion of the less-risk-averse agent remain at γ = 1. For these
parameter values, our model leads to an interest rate between 1.25 and 3.75 percent, a risk premium
for the stock between 2.25 and 4.50 percent, and a stock return volatility around 15 percent.

Figure 9 illustrates the various properties of the stock price under this set of parameter values.
The top left panel plots the stock’s price-dividend ratio Yt for different states of the economy. In
contrast to the baseline case, the price-dividend ratio is no longer monotonic in st in this case.
In fact, it is contracyclical for all st less than 0.75. That is, the price-dividend ratio can actually
decrease with the level of the market. But for extremely good states of the economy, i.e., when
st exceeds 0.75, the correlation between the two turns positive. The price-dividend ratio has a
minimum value of roughly 25 at around st = 0.75.

The top right panel shows the behavior of the expected return on the stock qt. It shows
a similar dependence on st as the dividend yield but with some differences in the low states of
the economy. In particular, for st between 0.05 and 0.75, the expected return of the stock is
procyclical—it increases with the level of the market. For st less than 0.05 or greater than 0.75,
however, the expected return becomes countercyclical.

This nonmonotonic behavior makes it clear that the expected return in the two-agent economy
is not just a weighted average of the expected returns of the two extreme cases when only the more-
risk-averse agent or the less-risk-averse agent populates the market. In these cases, the expected
stock return would be 0.06 and 0.0575, respectively. Figure 9 shows that the expected return of the
stock in the two-agent model can lie outside the bounds given by the limiting one-agent economies
implied by allowing st to approach zero or one. This result parallels those described in Wang (1996)
for the riskless interest rate.

The bottom left panel of Figure 9 plots the expected excess return of the stock against st.
It is interesting that it decreases monotonically with st. The difference in the behavior of the
expected excess return and that of the expected return is caused by the riskless interest rate, which
is monotonically increasing with st under the current parameter values.

What is the most striking is the behavior of stock return volatility, which is shown in the
bottom right panel of Figure 9. Its dependence on the state of the economy is highly nonlinear.
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Figure 9. Stock price behavior under alternative parameter values. The top
two panels plot the price-dividend ratio (the left panel) and the expected return (the
right panel) of the stock, respectively, as functions of st. The bottom two panels plot the
expected excess return (the left panel) and return volatility (the right panel) of the stock,
respectively. The parameters are at the alternative values: μ = 0.02, σ = 0.15, ρ = 0.04,
and γ = 1.00.

When st is small, the volatility decreases with the level of the stock market. It reaches a minimum
when st is around 0.25. For st between 0.25 and 0.85, the volatility of the stock is positively
related to the level of its price. After reaching its maximum at st around 0.85, the volatility
becomes negatively related to st again. The fact that stock return volatility can be lower than the
fundamental volatility σ, its value in the single-agent economy, shows that risk sharing between the
two agents can help to reduce price volatility under certain circumstances.

7.5 Interest Rates and Bond Prices

We now turn our attention to the behavior of interest rates and bond prices. The instantaneous
interest rate is given in Equation (21). The behavior of interest rates in a market with heterogeneous
agents is analyzed in detail by Wang (1996) in a model similar to ours. Although the interest rate
stays constant when only one of the agents is present in the market, it becomes stochastic when
both are present. The solution we obtain for the agents’ equilibrium portfolio policies allows us
to further link quantities in the market such as the total amount of credit with the behavior of
interest rates and bond prices.
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In addition to the instantaneous interest rate, we can also compute the prices of long-term
bonds and their yields as in Wang (1996). Especially, we want to consider the price of a consol
bond which pays a continuous interest flow at a rate of one.

Proposition 5. The price of consol bond is

Bt = Et

[∫ ∞

0

e−ρτ

(
Ct+τ

Ct

)−2γ

dτ

]
,

= a′1 − a′2 st F (1, 1−θ, 2+θ−2γ; st) − a′3 (1 − st) F (1, λ+1, 2γ+2λ+2; 1−st), (33)

where

a′1 =
θ + λ− γ

ψ(γ + λ)(θ − 2γ)
, a′2 =

2γ
ψ(1 + θ − 2γ)(θ− 2γ)

, a′3 =
γ

ψ(γ + λ)(2γ + 2λ+ 1)
. (34)

The yield to maturity on the consol bond, which represents an average yield on long-term bonds,
can then be defined by

lt =
1
Bt
. (35)

The difference between the long-term bond yield and the instantaneous interest rate rt, lt − rt,
gives a measure of the term spread for bond yields.

Figure 10 illustrates the behavior of short- and long-term interest rates under the baseline
parameter values. The top left panel plots the instantaneous interest rate as a function of st. Note
that at st = 0, rt reaches the limiting interest rate r(2) when only the more-risk-averse is present
in the market, which is 0.0268. Similarly, at st = 1, rt approaches the limiting interest rate r(1)

when only the less-risk-averse agent is present, which is 0.0256. Overall, in this case rt decreases
with the level of aggregate consumption (or stock price).5

However, it is worth noticing that for a significant range of st, namely, from 0.15 to 0.30, the
interest rate remains relatively constant. To better understand this phenomenon, let us compare
the behavior of rt with that of the market-leverage ratio shown in Figure 5. We observe that the
market-leverage ratio reaches its maximum when st is around 0.25. This suggests that when the
market-leverage ratio reaches its peak, the demand and the supply of credit are both maximized.
At this point, they also become less variable with respect to changes in the state of the economy. As
a result, the interest rate is less volatile. We further confirm this intuition below when we examine
the interest-rate dynamics. When st is outside this range, both the market-leverage ratio and the
interest rate change significantly when the aggregate endowment varies. This implies a positive
correlation between absolute changes in the market-leverage ratio and interest rate.6

5This overall relation between rt and st is sensitive to the parameter values, which determine r(1)

and r(2). If r(2) > r(1), as in the case here, rt decreases with Xt overall (but not necessarily
monotonically). If r(2) < r(1), the opposite is true.
6The direction of changes in the leverage ratio and interest rate is ambiguous, depending upon
which side of the maximum leverage ratio the market is on and the overall relation between the
interest rate and aggregate consumption. See also the previous footnote.
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Figure 10. Bond yields and interest rate dynamics. The top two panels plot the
instantaneous interest rate (the left panel) and the term spread of interest rates (the right
panel) against st, respectively. The bottom two panels plot the drift (the left panel) and
volatility (the right panel) of the instantaneous interest rate, respectively. The parameters
are at the baseline values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

The top right panel of Figure 10 shows the term spread of interest rates for different states of
the economy. First recall that st = 0 and 1 correspond to the single-agent economy when the term
spread is zero because in these cases the interest rate is constant and thus the term structure of
interest rates is flat. When both agents are present, this is no longer the case. For small values of
st, i.e., when it is less than 0.18, the term spread is positive. Given that we have not computed the
interest rates for all maturities, we cannot make detailed statements about the shape of the term
structure. However, the positive difference between the yield on the consol and the instantaneous
interest rate indicates that overall the term structure is upward sloping. The term spread reaches
a maximum of 0.10 basis points when st is around 0.08. As st increases further, the term spread
starts to decrease. It turns negative when st exceeds 0.18. This implies an overall downward-sloping
term structure of interest rates. The term spread has a minimum of −0.48 basis points at st = 0.55
and approaches zero as st approaches one.

Obviously, the term spread we observe in this case is very small in magnitude. This is in part
because for the parameter values we use, the level and the variability of the interest rate are both
low, roughly consistent with the data. The low volatility of the interest rate will limit the slope
of term structure in general. Given the limited degrees of freedom we have in the model, we focus
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less on the magnitudes of various effects and more on their qualitative features.

Our results indicate that the relation between the term spread and the aggregate state of the
economy can be quite rich. Within certain ranges of the economy (i.e., st > 0.55), it behaves
procyclically, while for other ranges of the economy, it can be countercyclical.

Two factors drive the shape of the term structure, the expectation about future interest rates
and the risk premium associated with their uncertainty. In order to see how expectations about
future interest rates behave, we plot in the bottom two panels of Figure 10 the drift of the in-
stantaneous interest rate (the left panel) and its volatility (the right panel), respectively. It is not
surprising that the drift of the interest rate is overall negative. It is highly nonlinear, however. In
particular, at around st = 0.17, it turns to slightly positive (it is positive for 0.14 ≤ st ≤ 0.20).

Examining the various panels in Figure 10, we notice that the interest rate is relatively insen-
sitive to st and the term spread is positive at around the same range of st where the drift of rt is
near zero. From the bottom right panel of Figure 10, we further confirm that the volatility of the
interest rate becomes zero around st = 0.20. This suggests that in these states of the economy, the
risk premium for long-term bonds tends to be positive.

It is again useful to consider the interest-rate dynamics jointly with the amount of credit
generated in the market. As can be seen from Figures 5 and 10, the region over which both the
drift and volatility of the interest rate approach zero also overlaps with the region where the leverage
ratio of the market is maximized. This reinforces the intuition that quantities and prices are closely
related.

When st exceeds 0.20, the economy is in high consumption states and the drift of the interest
rate is always negative. The expectation about future decreases in interest rates seems to dominate
the term spread and makes it negative for a wide range of st, i.e., when 0.20 < st < 1.

As in the discussion of stock returns, the behavior of the instantaneous interest rate and the
term spread in our model also depends on the parameter values. For example, for the alternative
set of parameter values (μ = 0.02, σ = 0.15 and ρ = 0.04), r(2) < r(1), and the interest rate
increases with st. The term spread is always negative in this case, however, suggesting a negative
risk premium for long-term bonds. For brevity, we omit a more-detailed discussion of various
possible interest-rate dynamics that can emerge from our model.

8. TRADING ACTIVITY

As we discussed in Sections 5 and 6, risk-sharing between the two agents with different risk pref-
erences is achieved through their trading in the securities market. In particular, in our model it is
accomplished by allowing the less-risk-averse agent to borrow in the credit market and then take on
a levered position in the stock market. Moreover, such a levered position is not static, but rather
dynamic. As the economy evolves, the desire for borrowing and lending also changes for the less-
and more-risk-averse agents. Consequently, both agents follow dynamic trading strategies to repli-
cate their desired consumption profiles. Their equilibrium trading strategies not only drive asset
prices as we elaborated in the previous section, but also the trading activities both in the credit
and the stock market. In Section 6, we examined the amount of credit generated endogenously in
the market and its behavior. In this section, we turn our attention to the stock market and analyze
our model’s implications for stock trading activity and how it behaves.
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In a continuous-time setting like ours with the diffusive nature of the information flow, trading
volume in the conventional sense is not properly defined. In fact, it would be infinite. This is
because the local variation of the underlying shocks is unbounded, and so is the agents’ security
holdings. Trading costs have to be part of the analysis in order to study volume in a rigorous
manner (see, for example, Lo, Mamaysky and Wang (2004)). Such a treatment is beyond the scope
of this paper. Instead, we use an alternative measure for the amount of trading activity in the
market. In particular, given the stock holding of an agent Nt (e.g., the more-risk-averse agent), we
use its absolute volatility σN,t to gauge his trading activity. Given that the less-risk-averse agent’s
stock holding is 1−Nt, our measure of trading activity does not depend on which agent we follow.

From the stock holdings of the more-risk-averse agent given in Equations (24-25), some algebra
yields the following expression for σN,t,

Vt = σN,t =
∣∣∣∣
[

1
Φt

dΨt

dst
− Ψt

Φ2
t

dΦt

dst

]
σs,t

∣∣∣∣, (36)

where σs,t is the volatility of st given in Equation (27). Figure 11 plots our measure of stock trading
activity Vt for different values of st.
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Figure 11. Stock trading activity. The figure plots the volatility of agents’ stock
holdings as a measure of trading activity for different values of st. The parameters are at
the baseline values: μ = 0.03, σ = 0.12, ρ = 0.01, and γ = 1.00.

Not surprisingly, trading activity exhibits the same unimodal pattern as the market-leverage
ratio. In the two extremes, i.e., when st = 0 or 1, the market is dominated by one of the agents and
there is no trading. Somewhere in the middle range of st, trading is most intense as both agents
have large needs to share risk and are also compatible in size to accommodate each other.

The behavior of stock trading activity shown in Figure 11 has several interesting implications.
First, the level of trading activity evolves smoothly in the state space, but can differ substantially
in different parts of the state space. This implies that it can be highly persistent over time. When
the economy moves into those states with high trading activity, say, when st falls between 0.05
and 0.30, it will stay there for a while and so will trading activity. Second, in some states of the
economy, in particular when st is relatively small, trading is procyclical, while in other states, i.e.,
when st is relatively large, it can be countercyclical. This rich relation between trading activity
and changes in the price level of the stock market may help explain the complex empirical patterns
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between them (see, for example, Karpoff (1987) and Gallant, Rossi and Tauchen (1992)). Third,
comparing the behavior of trading activity and stock return volatility, we see a strong positive
relation between the two. Trading is particularly active when return volatility is high. This is one
of the most robust patterns about trading activity observed in the data (see Karpoff). Fourth,
comparing the behavior of stock trading activity and leverage in the market (Figure 5), we also see
a close relation between these two variables. In particular, trading in the stock market peaks as the
market-leverage ratio approaches its maximum. This is intuitive given that in our model leverage
is used by the less-risk-averse agent to finance his stock purchases.

9. EMPIRICAL RESULTS

The key difference between the standard single-agent framework and the two-agent model developed
in this paper is that the distribution of wealth among agents becomes an important state variable
that drives the equilibrium. While the notion that heterogeneity affects asset pricing is certainly
not new, taking heterogeneous-agent models to the data has traditionally proven difficult precisely
because agent heterogeneity is not directly observable, at least at the aggregate level.

In this paper, we have shown that the credit market allows for risk sharing among the agents
in the model. In general, the more equal the distribution of wealth in the economy, the greater
is the amount of leverage. An immediate corollary of our results is that changes in the size of
the credit sector (which are observable) provide direct information about changes in the relative
wealth of the two classes of agents (which are not directly observable). Thus, the model delivers
the testable empirical implication that changes in the size of the credit sector should be associated
with changes in key asset-pricing measures such as expected returns.

To explore this empirical implication of the model, we focus on the relation between the equity
premium and the size of the credit sector. Since the equity premium is itself not directly observable,
we will use the standard approach of estimating predictive vector autoregressions (VARs) in which
ex post excess stock market returns are regressed on ex ante credit sector measures. Intuitively, if
time variation in the equity premium is correlated with changes in the size of credit sector, then
these measures should have predictive power for subsequent excess stock returns

As the measure of excess stock market returns, we use the excess return on the CRSP value-
weighted index. The data consist of the annual excess (non-overlapping) returns for the 55-year
period from 1952 to 2006 (data provided by courtesy of Ken French).

There is an extensive and rapidly-growing literature on stock return predictability that is far too
lengthy for us to review in depth. We note, however, that there are a number of economic measures
identified in the literature that appear to have some predictive power for excess stock returns.
Our approach will be to include three of the variables that appear prominently in the forecasting
literature, and then evaluate whether credit sector information has incremental forecasting power
for excess returns in the VARs.

These three variables are: the lagged excess return for the CRSP value-weighted index, the
Lettau and Ludvigson (2001) cay measure, and the annual dividend yield for the CRSP value-
weighted index. The inclusion of the lagged excess return is motivated by the extensive empirical
literature on the returns from momentum strategies. Examples of this literature include DeBondt
and Thaler (1985), Lo and MacKinlay (1988), Poterba and Summers (1988), Jegadeesh and Titman
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(1993), and many others.7 The inclusion of the cay measure is motivated by the evidence in Lettau
and Ludvigson that the consumption-wealth ratio is a strong predictor of stock returns. Finally,
the inclusion of the dividend yield in the VARs is motivated by the results of Fama and French
(1988), Goyal and Welch (2003), Cochrane (2007), Lettau and Van Nieuwerburgh (2007), and many
others.

To capture changes in the size of the credit sector, we use two variables in the VARs that
reflect the size of the credit market in the economy. In particular, the first measure captures the
relative size of cash flows in the credit and stock markets. It is defined as the ratio of aggregate
personal interest income to aggregate personal dividend income as reported in lines 14 and 15 of
Table 2.1 “Personal Income and its Disposition” reported in the National Income and Product
Accounts (NIPA) by the Bureau of Economic Analysis.8 The second measure can be viewed as
a measure of debt service and is defined as the ratio of aggregate personal income from interest
income to the total value of household assets. The total value of household assets appears as line 1
of Table B.100 “Balance Sheet of Households and Nonprofit Organizations” reported in statistical
release Z.1 “Flow of Funds Accounts of the United States” by the Federal Reserve Board.

Table 1 reports the results from the VARs for the excess return predictive regressions. The
first regression specification includes only the lagged excess return, cay measure, and dividend yield.
Consistent with the results in the literature, we find that the combination of these three ex ante
variables has significant in-sample predictive power for the CRSP value-weighted excess returns at
the one-year horizon. The R2 for the regression is 0.2185; the adjusted R2 is 0.1716.

The predictive power for excess stock returns increases dramatically when the two credit sector
measures are included in the VAR specification. When the first lagged values are included, the R2

becomes 0.3451 and the adjusted R2 becomes 0.2769. When the first two lagged values of these
variables are included, the R2 increases to 0.4837, while the adjusted R2 increases to 0.4033. To our
knowledge, these in-sample R2s far exceed any that have been previously reported in the literature
for one-year horizons.9

Since the NIPA and Federal Reserve Flow of Funds data are not necessarily available in the
market at the end of year t − 1 to use in forecasting excess returns for year t, it is important to
address the issue of look-ahead bias in this analysis. To this end, we reestimate the VARs using only
the second and third lags of the credit sector variables. This diagnostic check is a very conservative
one since we are limiting the regression to credit sector variables that are roughly one year out of
date. Despite this large handicap, the results indicate that the credit sector variables still provide
significant incremental predictive power. In particular, the R2 for the regression is 0.4354 while the
adjusted R2 is 0.3456.

Finally, Table 1 also reports Newey-West t-statistics for the explanatory variables. These t-
statistics need to be interpreted carefully, however, given the well-known biases associated with
lagged persistent variables in predictive regressions (see Stambaugh (1999)).

10. CONCLUSION

7Also see Grinblatt, Titman, and Wermers (1995) and Chan, Jegadeesh, and Lakonishok (1996).
8Data reported as of September 5, 2007.
9These R2s are also on the same order of magnitude as those reported by Cochrane and Piazzesi
(2005) in forecasting one-year excess returns on Treasury bonds using a vector of forward rates.
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Table 1. Predictive Regressions for Excess Stock Returns with Leverage Variables.
This table reports the results from the regression of annual excess returns for the CRSP value-
weighted index on the ex ante predictive variables. ExRett denotes the excess return on the CRSP
value-weighted index, Cayt is the Lettau-Ludvigson Cay measure, DivYldt is the dividend yield for
the CRSP value-weighted index, Int/Divt is the ratio of total interest received to total dividends
received, where these values are from the BEA National Income and Product Accounts, Int/Assetst
is the ratio of total interest received to total household assets, where the total household value is
from the Federal Reserve Board’s Flow of Funds Z.1 Report. The p-value is for the F -statistic for
significance of the regression. The data consist of annual observations for the 1952-2006 period (N
= 55).

Predictive Regression Coefficients
Variable [Newey-West t-Statistics]

Intercept −0.0113 −0.1607 −0.2900 −0.2821
[−0.15] [−1.56] [−2.72] [−2.08]

ExRett−1 −0.0425 −0.0466 −0.2774 −0.1681
[−0.39] [−0.45] [−2.41] [−2.38]

Cayt−1 5.3096 4.0419 4.3209 5.0453
[3.16] [2.30] [2.20] [3.44]

DivYldt−1 2.7013 7.5216 12.1719 10.7310
[1.29] [3.62] [4.57] [3.12]

Int/Divt−1 −0.2166 0.0249
[−2.57] [0.17]

Int/Divt−2 −0.3615 −0.2380
[−2.63] [−2.39]

Int/Divt−3 −0.1160
[−1.16]

Int/Assetst−1 32.1657 −24.1033
[2.26] [−0.87]

Int/Assetst−2 74.6362 35.9002
[3.10] [1.55]

Int/Assetst−3 18.6555
[0.77]

R2 0.2185 0.3451 0.4837 0.4354
Adjusted R2 0.1716 0.2769 0.4033 0.3456
p-value 0.0060 0.0008 0.0001 0.0004
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The credit market does not play a significant role in the standard single-representative-agent model
in asset pricing. In this paper, we allow for two classes of investors with different levels of risk
aversion and solve in closed form for equilibrium consumption levels, portfolio choices, and asset
prices. In this setting, agents borrow and lend to each other to achieve optimal risk sharing and a
meaningful credit sector arises.

In this model, the “demographics” of the market, as measured by the relative wealth of the
agents, emerges as a key state variable driving the market. We show that borrowing and lending
between the less- and more-risk-averse investors facilitates risk sharing between them and shapes
the evolution of their relative wealth, which induces significant time variation in expected asset
returns and return volatility. An immediate implication of this market interaction is that changes
in the amount of credit in the market reveal information about changes in the relative wealth of
the agents, and therefore, about changes in return moments. We take this empirical implication to
the data and show that variables measuring changes in the size of the credit sector have significant
predictive power for excess stock returns, even after controlling for previously documented predictive
variables. Our results provide strong support for the empirical implications of the model.
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APPENDIX

A1. Solution to the Single-Agent Model.

In equilibrium, Ct = Xt for the representative agent. Substituting this into the Euler equation
gives,

Pt

Xt
=

∫ ∞

0

e−ρτ Et[X
1−γ
t+τ ]

X1−γ
t

dτ. (A1)

From Equation (1),
Xt+τ = Xt exp

[
(μ− 1

2
σ2)τ + σ (Zt+τ − Zt)

]
, (A2)

which implies
Et[X

1−γ
t+τ ] = X1−γ

t exp
[
(1 − γ)(μ− 1

2
σ2)τ + 1

2
(1 − γ)2σ2τ

]
. (A3)

Substituting into Equation (A1) gives

Pt

Xt
=

∫ ∞

0

e−(ρ−κ)τ dτ, (A4)

where ρ > κ, which then implies Equation (9).

Denote the value of a riskless zero-coupon bond with maturity Δτ as e−rΔτ . The agent’s
first-order conditions imply

e−rΔτ = e−ρΔτ
E[X−γ

t+Δτ ]

X−γ
t

. (A5)

Using Equation (A2) to represent X−γ
t+Δτ and taking expectations gives an expression similar to

Equation (A3) which is then substituted into Equation (A5),

e−rΔτ = e−ρΔτ exp
[−γ(μ− 1

2
σ2) Δτ + 1

2
γ2σ2Δτ

]
. (A6)

Taking the logarithm and letting Δτ → 0 gives Equation (11).

A2. Solution to the Two-Agent Model.

A. Equilibrium Consumption Allocation

To be a solution for the problem in Equation (14), an allocationC1,t, C2,t must satisfy the optimality
condition,

E0

[∫ ∞

0

e−ρt
[
α C−γ

1,t − (1 − α) C−2γ
2,t

]
dt

]
= 0, (A7)

for all t > 0. Substituting in the solutions for C1,t and C2,t given in Equation (15) shows that they
satisfy this optimality condition. The relative weight of the two agents, α, is determined by the
initial conditions of the economy, in particular X0 and agents’ endowment of shares, given by n.
The condition to determine α is given later.
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B. The Stock Price

To solve for the stock price Pt, we substitute the more-risk-averse agent’s optimal consumption into
Equation (17),

Pt = (
√

1 + bXt − 1)2γ Et

[∫ ∞

0

e−ρτ Xt+τ

(
√

1 + bXt+τ − 1)2γ
dτ

]
, (A8)

= b−2γ(
√

1 + bXt − 1)2γ Et

[∫ ∞

0

e−ρτ X1−2γ
t+τ (

√
1 + bXt+τ + 1)2γ dτ

]
. (A9)

We rewriteXt+τ as Xt e
u where u is normally distributed with mean μ̂τ = (μ− 1

2σ
2)τ and variance

σ2τ . Substituting in the normal density gives

Pt = b−2γ (
√

1 + bXt − 1)2γ X1−2γ
t

∫ ∞

−∞

1√
2πσ2

e(1−2γ)u(
√

1 + bXteu + 1)2γ

∫ ∞

0

e−ρτ τ−1/2 exp
[−u2 + 2μ̂uτ − μ̂2τ2

2σ2τ

]
dτ du, (A10)

= b−2γ (
√

1 + bXt − 1)2γ X1−2γ
t

∫ ∞

−∞

1√
2πσ2

e(1−2γ)u (
√

1 + bXteu + 1)2γ

eμ̂u/σ2
∫ ∞

0

τ−1/2 exp
(−u2

2σ2

1
τ
− (μ̂2 + 2σ2ρ)τ

2σ2

)
dτ du, (A11)

= b−2γ(
√

1 + bXt − 1)2γX1−2γ
t

∫ ∞

−∞

2√
2πσ2

e(1−2γ+μ̂/σ2)u(
√

1 + bXteu + 1)2γ

√
| u |
ψ

K1/2

( | u | ψ
σ2

)
du, (A12)

where ψ =
√
μ̂2 + 2ρσ2, K1/2(·) is the modified Bessel function (see Abramowitz and Stegum

(1970), Chapter 10), and the last expression follows from Gradshteyn and Ryzhik (2000) 3.471.9.
In turn, Gradshteyn and Ryzhik 8.469.3 implies

K1/2

( | u | ψ
σ2

)
=

√
πσ2

2 | u | ψ exp
(− | u | ψ

σ2

)
. (A13)

Substituting this into Equation (A12) gives,

Pt =
b−2γ

ψ
(
√

1 + bXt − 1)2γ X1−2γ
t (I1 + I2), (A14)

where

I1 =
∫ ∞

0

exp [(1 − 2γ − λ)u]
(√

1 + bXteu + 1
)2γ

du, (A15)

I2 =
∫ 0

−∞
exp [(1 − 2γ + θ)u]

(√
1 + bXteu + 1

)2γ

du, (A16)
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and

λ =
ψ − μ̂

σ2
≥ 0, θ =

ψ + μ̂

σ2
≥ 0. (A17)

Define a new variable w =
√

1 + bXteu − 1, and let η =
√

1 + bXt. Changing variables gives

I1 = 21−λ (bXt)2γ+λ−1

∫ ∞

η−1

(w + 1) (1 + 1
2
w)−λ w−λ−2γ dw, (A18)

I2 = 2θ+1 (bXt)2γ−θ−1

∫ η−1

0

(w+ 1) (1 + 1
2
w)θ wθ−2γ dw. (A19)

In turn,

I1 + I2 = 21−λ (bXt)2γ+λ−1

∫ ∞

η−1

w−λ−2γ (1 + 1
2
w)−λ dw

+ 21−λ (bXt)2γ+λ−1

∫ ∞

η−1

w1−λ−2γ (1 + 1
2
w)−λ dw

+ 2θ+1 (bXt)2γ−θ−1

∫ η−1

0

wθ−2γ (1 + 1
2
w)θ dw

+ 2θ+1 (bXt)2γ−θ−1

∫ η−1

0

w1+θ−2γ (1 + 1
2w)θ dw. (A20)

Applying Gradshyteyn and Ryzhik 3.194.1 and 3.194.2, which requires 1 + θ − 2γ > 0 and 2γ +
2λ− 2 > 0, and then using Abramowitz and Stegun (1970) 15.3.4, we have

I1 + I2 =
2(η+ 1)2γ−1

2γ + 2λ− 1
F (1, λ, 2γ+ 2λ; 2/(η+ 1))

+
2(η+ 1)2γ−1(η − 1)

2γ + 2λ− 2
F (1, λ, 2γ+ 2λ− 1; 2/(η+ 1))

+
2(η+ 1)2γ−1

1 + θ − 2γ
F (1,−θ, 2 + θ − 2γ; (η− 1)/(η+ 1))

+
2(η+ 1)2γ−1(η − 1)

2 + θ − 2γ
F (1,−θ, 3 + θ − 2γ; (η− 1)/(η+ 1)). (A21)

To simplify the expression, we apply Abramowitz and Stegun 15.2.20,

F (1, λ, 2γ+ 2λ− 1; 2/(η+ 1)) =
η + 1
η − 1

− 2(2γ + λ− 1)
(η − 1)(2γ + 2λ− 1)

F (1, λ, 2γ+ 2λ; 2/(η+ 1)), (A22)

F (1,−θ, 2 + θ − 2γ; (η− 1)/(η+ 1)) =
η + 1

2
− (1 + θ − 1γ)(η− 1)

2 + θ − 2γ
F (1,−θ, 3 + θ − 2γ; (η− 1)/(η+ 1)). (A23)

Substituting these expressions into the solution for I1 + I2, substituting I1 + I2 into (A14), and
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then collecting terms gives

Pt =
Xt

ψ(γ + λ− 1)
+

Xt

ψ(1 + θ − 2γ)

− 2γ(Xt −Ct)
ψ(1 + θ − 2γ)(2 + θ − 2γ)

F (1,−θ, 3 + θ − 2γ; 1−Ct/Xt)

− γCt

ψ(γ + λ− 1)(2γ + 2λ− 1)
F (1, λ, 2γ+ 2λ;Ct/Xt), (A24)

after substituting out η. Dividing this expression through by Xt and using the definition of st gives
the price-dividend ratio in Equation (18) and defines the constants a1, a2, and a3.

C. The Instantaneous Interest Rate and Consol Price

The riskless rate r is again given by the more-risk-averse agent’s first-order condition for a short-
term riskless bond,

e−rΔτ = e−ρΔτ Et

[(
Ct+Δτ

Ct

)−2γ
]
, (A25)

which becomes

e−rΔτ = e−ρΔτ

[
Et[(

√
1 + bXt+Δτ − 1)−2γ ]

(
√

1 + bXt − 1)2γ

]
. (A26)

Applying Itô’s Lemma to (
√

1 + bXt+Δτ −1)−2γ , taking expectations in the numerator above, and
then allowing Δτ → 0 gives

rt = ρ+
4μγ(1 + bXt) − γbσ2Xt

2(1 + bXt)(2−Ct/Xt)
− γ(2γ + 1)σ2

(2 −Ct/Xt)2
. (A27)

Expressing Xt in terms of st and substituting in gives Equation (21).

To solve for the price of a consol bond, we substitute the solution for Ct into Equation (33)
which gives

Bt = (
√

1 + bXt − 1)2γEt

[∫ ∞

0

e−ρτ (
√

1 + bXteu − 1)−2γdτ

]
. (A28)

This expression is very similar to Equation (A8) and can be evaluated by following the same
steps used in deriving Pt above. In doing this, the additional parameter restrictions θ > 2γ and
γ + λ > 0 are required to insure the existence of a finite solution for the consol price. Combining
these parameter restrictions with those following Equation (A20), we have the sufficient parameter
conditions in Equation (6) to guarantee finite stock and consol prices.

D. Optimal Portfolios

The more-risk-averse agent’s wealth Wt is the present value of his consumption stream

Wt = Et

[∫ ∞

0

e−ρs

(
Ct+τ

Ct

)−2γ

Ct+τ dτ

]
. (A29)
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After substituting in for Ct, this becomes

Wt =
2
b
(
√

1 + bXt − 1)2γEt

[∫ ∞

0

e−ρτ
(√

1 + bXteu − 1
)1−2γ

dτ

]
. (A30)

This expression is similar to Equation (A8) and the closed-form solution in Equation (22) can be
obtained by following the same steps used in deriving Pt above.

To solve for Nt we note that the ratio of the diffusion coefficients for Wt and Pt is simply
WX/PX . These derivatives are easily obtained from Equations (18) and (22) using the differenti-
ation formula for the hypergeometric function, F ′(a, b, c′z) = (ab/c)F (a+ 1, b+ 1, c + 1; z). The
value of Mt follows from the identity Mt = Wt −NtPt.

E. Stock-Price Dynamics

To obtain stock price dynamics, we note that Pt = XtYt. Furthermore,

Xt =
4
b

st

(1− st)2
. (A31)

Thus, Pt can be expressed exclusively as a function of st. A straightforward application of Itô’s
Lemma gives the expressions in Equations (29-30).

F. The Determination of α

The initial wealth of the more-risk-averse agent is nP0. From Equation (A29),

nP0 = W0 =
2
b
(
√

1 + bX0 − 1)2γ E0

[∫ ∞

0

e−ρt
(√

1 + bXt − 1
)1−2γ

dt

]
. (A32)

Substituting in Equation (A8) for P0, we have

n

[∫ ∞

0

e−ρt(
√

1 + bXt − 1)−2γXt dt

]
=

2
b
E0

[∫ ∞

0

e−ρt
(√

1 + bXt − 1
)1−2γ

dt

]
. (A33)

Since the conditional expectations on the two sides of this equation depend only on X0 and b, this
equation determines b in terms of n and X0. Since

b = 4
(

α

1 − α

)1/γ

, (A34)

we obtain α.

G. The Measure of Trading Activity σN,t

From the stock holding of the more-risk-averse agent given in Equations (24-25) and the dynamics
of st given in Equations (26-27), by Itô’s lemma we have σN,t = Ns σs,t.
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