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1 Introduction

In this paper we explore asset-pricing implications of innovation. We concentrate on two

effects of innovation. First, while innovation expands the productive capacity of the economy,

it increases competitive pressure on existing firms and workers, reducing profits of existing

firms and eroding the human capital of older workers. Thus, innovation creates a risk factor,

which we call “displacement risk.” Second, since economic rents from innovation are captured

largely by the future cohorts of inventors through the firms they create, older workers cannot

use financial markets to avoid the negative effects of displacement.

We study an overlapping-generations general-equilibrium production economy with mul-

tiple intermediate goods, which are used to produce a single consumption good. Innovation

creates a stochastically expanding variety of intermediate goods. Intermediate goods are

partial substitutes, therefore growth in their variety intensifies competition between their

producers and leads to displacement of the established firms by the new entrants. In addi-

tion, older workers are not as well adapted to the new technologies as the new cohorts of

agents, which implies that innovation diminishes older worker’s human capital. Thus, there

are two sides to innovation. The bright side is the increased productivity that it brings,

which raises aggregate output, consumption, and wages. The dark side is the reduced wage

bill and consumption share of the older agents.

The displacement risk faced by older agents is a systematic risk factor. Individual Euler

equations in our model cannot be aggregated into a pricing model based solely on aggregate

consumption because of the wedge between the future consumption of all agents present

currently and the future aggregate consumption: the latter includes the consumption of

future cohorts, but the former does not. This wedge is stochastic and driven by innovation

shocks. Thus, the standard aggregate consumption-based pricing model must be augmented

with the displacement-risk factor. This argument helps explain several important empirical

patterns in asset returns.

First, the displacement risk factor is connected to cross-sectional differences in stock

returns. We assume that existing firms participate in innovation, but some firms are more
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likely to innovate than others. The more innovative firms derive a larger fraction of their

value from future inventions and earn higher valuation ratios, which makes them “growth

firms.” Because of their relatively high exposure to the innovation shocks, growth firms offer

a hedge against displacement risk and, in equilibrium, earn lower average returns than less

innovative “value firms.” Thus, heterogeneous exposure to displacement risk helps explain

the positive average return premium earned by value stocks relative to growth stocks, called

the value premium. Moreover, innovation shocks generate co-movement among value stocks

and among growth stocks, giving rise to a value-growth factor in stock returns. We test this

implication empirically. We identify innovation shocks through their effect on consumption

of individual cohorts of agents and show that inter-generational differences in consumption

correlate with the realized return differences between value and growth stocks.

Second, the aggregate equity premium in our model is boosted by the stock-market

exposure to the displacement-risk factor. Large innovation shocks simultaneously lower the

value of existing firms through increased competition, and reduce consumption of existing

agents through the erosion of their human and financial wealths. As a result, agents require

a higher premium to hold stocks than could be inferred from the aggregate consumption

series using standard pricing models.

Third, the equilibrium interest rate in our model is lower than suggested by the aggregate

consumption process and agents’ preferences. This is because individual agents’ consumption

growth is lower on average and riskier than that of aggregate consumption. This property

of overlapping-generation economies is noted in the seminal paper of Blanchard (1985) and

emphasized recently by Gârleanu and Panageas (2007).1

In addition to the empirical tests, we calibrate our model and verify that our empirical

results are quantitatively consistent with the model’s predictions.

Our paper relates to several strands of the literature. Our model of innovation is based

on Romer (1990), who studies endogenous sources of growth. We treat growth as exogenous

1The size of this effect is magnified if we allow for some degree of catching up with the Joneses, as in

Abel (1990).
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and instead focus on the impact of innovation on financial asset returns.

Several papers use an overlapping-generations framework to study asset pricing phenom-

ena, e.g., Abel (2003), Constantinides et al. (2002), Gârleanu and Panageas (2007), Gomes

and Michaelides (2007), or Storesletten et al. (2007). None of these papers, however, con-

siders the displacement risk, which is critical for our results. DeMarzo et al. (2004, 2008),

discuss the importance of pecuniary externalities and complementarities for the behavior

of existing agents in a setup where future endowments are non-tradable. Even though the

non-tradability of future endowments is important for both these papers and ours, our model

does not derive its implications from complementarities in the behavior of existing agents,

but rather from limited intergenerational risk sharing coupled with increased rivalry due to

the ideas introduced by new generations.

Our paper also relates to the literature that studies the cross-section of stock returns in

an equilibrium framework. We contribute to this active literature, which includes Berk et al.

(1999), Gomes et al. (2003), Carlson et al. (2004, 2006), Papanikolaou (2007), and Zhang

(2005) among many, by providing a new approach to the value-premium puzzle. Many of

the earlier papers consider single-factor models and rely on time-varying conditional betas

to produce a value premium. Instead, we propose a novel source of systematic risk that

generates return differences between value and growth stocks.

We also contribute to the vast literature on the equity-premium puzzle, (e.g., Mehra

and Prescott (1985), Campbell and Cochrane (1999)). The displacement-risk factor helps

reconcile a high equity premium with a smooth time series of aggregate consumption. We

argue that the displacement risk can reconcile the historical moments of stock and bond

returns with the fundamentals.

The rest of the paper is organized as follows. In Section 2, we formulate and in Section

3 we solve our model. Section 4 analyzes qualitative properties of the model, and Section

5 contains a quantitative evaluation, including empirical tests. We collect technical results

and proofs in the Appendix.

4



2 Model

2.1 Agents’ Preferences and Demographics

We consider a model with discrete and infinite time: t ∈ {. . . , 0, 1, 2, . . .}. The size of the

population is normalized to 1. At each date a mass λ of agents, chosen randomly, die, and a

mass λ of agents are born, so that the population remains constant. An agent born at time

s has preferences of the form

Es

s+τ∑

t=s

β(t−s)

(
cψt,s

(
ct,s
Ct

)1−ψ
)1−γ

1 − γ
, (1)

where τ is the (geometrically distributed) time of death, ct,s is the agent’s consumption

at time t, Ct is aggregate consumption at time t, 0 < β < 1 is a subjective discount

factor, γ > 0 is the agent’s relative risk aversion, and ψ is a constant between 0 and 1.

Preferences of the form (1) were originally proposed by Abel (1990), and are commonly

referred to as “keeping-up-with-the-Joneses” preferences. These preferences capture the idea

that agents derive utility from both their own consumption and their consumption relative to

per capita consumption. When ψ = 1, these preferences specialize to the standard constant-

relative-risk-aversion preferences. In general, for ψ ∈ [0, 1] agents place a weight ψ on their

own consumption (irrespective of what others are consuming) and a weight 1 − ψ on their

consumption relative to average consumption in the population. Our qualitative results hold

independently of the keeping-up-with-the-Joneses feature, which only helps at the calibration

stage, by reducing the value of the interest rate.

A standard argument allows us to integrate over the distribution of the stochastic times

of death and re-write preferences of the form (1) as

Es

∞∑

t=s

[(1 − λ)β](t−s)

(
cψt,s

(
ct,s
Ct

)1−ψ
)1−γ

1 − γ
. (2)
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2.2 Technology

Final-Good Firms

There is a representative (competitive) final-good producing firm that produces the single

final good using two categories of inputs: a) labor and b) a continuum of intermediate goods.

Specifically, the production function of a final good producing firm is

Yt = Zt
(
LFt
)1−α

[∫ At

0

ωj,t (xj,t)
α dj

]
. (3)

In equation (3) Zt denotes a stochastic productivity process, LFt captures the efficiency units

of labor that enter into the production of the final good, At is the number of intermediate

goods available at time t, and xj,t captures the quantity of intermediate good j that is used

in the production of the final good. The constant α ∈ [0, 1] controls the relative weight of

labor and intermediate goods in the production of the final good, while ωj,t captures the

relative importance placed on the various intermediate goods. We specify ωj,t as

ωj,t =

(
j

At

)χ(1−α)

, χ ≥ 0 (4)

For χ = 0, the production function (3) is identical to the one introduced by the seminal

Romer (1990) paper in the context of endogenous growth theory. Our version is slightly

more general, since the factor weights ωj,t, which are increasing functions of the intermedi-

ate good index j, allow the production function to exhibit a “preference” for more recent

intermediate goods. As we show below, this feature confers an additional degree of control

over the individual-firm profit variability. Even though our aim here is not to explain the

sources of growth in the economy, the production function (3) is useful for our purposes for

several reasons: a) Innovation, i.e., an increase in the variety of intermediate goods (At)

helps increase aggregate output; b) There is rivalry between existing and newly arriving

intermediate goods, since increases in At strengthen the competition among intermediate

goods producers, and c) Heterogeneity in intermediate, rather than final, goods is techni-

cally convenient, since we can keep one unit of the final good as numeraire throughout. An
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exact illustration of the first two properties is provided in the next section, where we solve

the model.

The productivity process Zt follows a random walk (in logs) with drift µ and volatility

σε:

log(Zt+1) = log(Zt) + µ+ εt+1, εt+1 ∼ N(0, σ2
ε ). (5)

At each point in time t, the representative final-good firm chooses LFt and xj,t (where j ∈
[0, At]) so as to maximize its profits

πFt = max
LFt ,xj,t

{
Yt −

∫ At

0

pj,txj,tdj − wtL
F
t

}
, (6)

where pj,t is the price of intermediate good j and wt is the prevailing wage (per efficiency

unit of labor).

Intermediate-Goods Firms

The intermediate goods xj,t are produced by monopolistically competitive firms that own

non-perishable blueprints to the production of intermediate good xj,t. Each intermediate

good is produced by a single firm, while a single firm may produce a countable number of

intermediate goods. In analogy to Romer (1990), we assume that the production of the

intermediate good j ∈ [0, At] requires one unit of labor (measured in efficiency units) per

unit of intermediate good produced, so that the total number of efficiency units of labor used

in the intermediate-goods sector is

LIt =

∫ At

0

xj,tdj. (7)

The price pj,t of intermediate good j maximizes the profits of the intermediate good pro-

ducer, taking the demand function of the representative final good firm xj (pj,t; pj′ 6=j , wt) ≡
arg maxxj,t π

F
t as given. To simplify notation, we shall write xj,t (pj,t) instead of xj,t (pj,t; pj′ 6=j , wt) .

Production of the intermediate good j generates profits2

2Any firm produces a countable number (and hence zero-measure set) of intermediate goods. Hence,
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πIt (j) = max
pj,t

{(pj,t − wt) xj,t(pj,t)} . (8)

2.3 Arrival of New Intermediate Goods and New Agents

New Products

The number of intermediate goods At expands over time as a result of innovations. Given

our focus on asset pricing, we assume that the innovation process is exogenous for simplicity.

The number of intermediate goods in our economy follows a random walk (in logs):3

log (At+1) = log(At) + ut+1. (9)

The increment ut+1 is i.i.d. across time for simplicity. To ensure its positivity, we assume

that ut+1 is Gamma distributed with parameters (k, ν).

The intellectual property rights for the production of the ∆At+1 = At+1 − At new in-

termediate goods belong either to arriving agents or to existing firms. We assume that a

fraction κ ∈ [0, 1] of the total value of the new blueprints is allocated uniformly to the

arriving agents, while the complementary fraction 1 − κ is introduced, also uniformly, by

established firms and hence belongs indirectly to existing agents, who own these firms.

Value and Growth Firms

Agents who arrive endowed with ideas start a continuum of firms that produce the respective

intermediate goods, and introduce them into the stock market.

it can ignore any feedback effects of the pricing of its intermediate good j on the demand for the other

intermediate goods it produces. Hence, maximization of the overall firm’s profits amounts to maximizing

the profits from each intermediate good separately.
3We choose a random-walk specification in order to ensure that aggregate consumption is a random

walk. The assumption of a random walk implies that — for a given ut+1 — the increase in production is

proportional to the current level of production. This assumption is routinely used in the literature and is

sometimes referred to as “standing on the shoulders of giants”. See e.g. Jones (1997).
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Figure 1: Illustration of the allocation of new blueprint value

These new firms come in two types, depending on whether they are capable of obtain-

ing blueprints for new intermediate goods in the future or not. The first type are “value

firms,”which cannot obtain any blueprints in future periods. They are only entitled to a

fraction ηκ of the value of blueprints introduced at time t + 1, where η ∈ (0, 1]. The other

kind of firms are “growth” firms. They are entitled to a fraction (1 − η)κ of the value of

new blueprints for intermediate goods, but they also receive a fraction of the new blueprints

in future periods. Specifically, in period n, growth firms born at s ∈ (−∞, n − 1] obtain a

fraction

(1 − κ)

(
1 −̟

̟

)
̟n−s (10)

of the value of the ∆An new blueprints. To simplify matters, we assume that there are

no intra-cohort differences between growth firms and any two growth firms of the same

cohort obtain the same value of blueprints in any given period. The geometric decay in the

fraction of new blueprints that accrues to a given growth firm as a function of its age ensures

that asymptotically the market capitalization of any firm goes to zero as a fraction of the

aggregate market capitalization.
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Workers

New business owners make up a fraction φ ∈ (0, 1) of new agents. The rest of the new agents

are workers. Workers start life with a constant endowment of hours h, which they supply

inelastically. The ratio of efficiency units of labor to hours is affected by two factors: a) age

and experience, and b) skill obsolescence. To capture the first notion, we assume that the

ratio of labor efficiency units to hours changes geometrically with age at the rate δ, so that

in the absence of skill obsolescence, the ratio of a worker’s endowment of efficiency units at

time t > s to the respective endowment at the time of birth s is given by (1 + δ)t−s. The

stylized assumption of geometric change is not crucial for our results, and we show how to

relax it, when we calibrate the model.

In the real world younger workers are likely to be more productive in the presence of

increased technological complexity than older workers. One potential reason is that their

education gives them the appropriate skills for understanding the technological frontier. By

contrast, older workers are likely to be challenged by technological advancements. In Ap-

pendix B we present a simple vintage model of the labor market that introduces imperfect

substitution across labor supplied by agents born at different times. To expedite the presen-

tation of the main results, in this section we assume that labor is a homogenous good and

that workers’ endowment of efficiency units depreciates in a way that replicates the outcome

of the more elaborate model in Appendix B.

Specifically, we assume that a worker’s total supply of efficiency units of labor is given

by h (1 + δ)t−s qt,s with

log(qt+1,s) = log(qt,s) − ρut+1, (11)

and ρ ≥ 0. This specification captures the idea that advancements of the technological

frontier act as depreciation shocks to the productivity of old agents. Such shocks generate

cohort effects in individual consumption and income, which are present in historical data.

We present empirical evidence in Section 5.1.

We normalize the initial endowment of efficiency units so that the aggregate number of
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efficiency units in the economy is constant. In particular, we set

qs,s = 1 − (1 − λ) (1 + δ) e−ρus (12)

and h = 1
λ
. We assume that (1 − λ) (1 + δ) ≤ 1. as a result, the number of per-worker

efficiency units, Lt/ (1 − φ), is always equal to 1, and hence h̄(1+ δ)t−sqt,s can be interpreted

as the fraction of total wages that accrues to workers born at time s.4

2.4 Asset Markets

Agents face complete markets. At each point in time they are able to trade in zero net

supply Arrow-Debreu securities contingent on the realization of future shocks εt+τ and ut+τ ,

∀τ > 0. This assumption implies the existence of a stochastic discount factor ξt, so that the

time-s value of a claim paying Dt at time t is given by Es
ξt
ξs
Dt.

Finally, agents have access to annuity markets as in Blanchard (1985). (We refer the

reader to that paper for details). The joint assumptions of complete markets for existing

agents and frictionless annuity markets simplifies the analysis considerably, since in a com-

plete market with annuities an agent’s feasible consumption choices are constrained by a

single intertemporal budget constraint. For a worker, that intertemporal budget constraint

is given by

Es

∞∑

t=s

(1 − λ)t−s
(
ξt
ξs

)
cwt,s = Es

∞∑

t=s

(1 − λ)t−s
(
ξt
ξs

)
wtqt,sh̄ (1 + δ)t−s , (13)

4Note that our assumptions imply

Lt

(1 − φ)
= λ

∑

s=−∞...t

[(1 − λ) (1 + δ)]
t−s

qt,s,

so that iterating forward once to obtain Lt+1

(1−φ) and using (11) and (12) yields

Lt+1

(1 − φ)
= λ

∑

s=−∞...t+1

(1 − λ) (1 + δ)
t+1−s

qt+1,s

= (1 − λ) (1 + δ)

(
Lt

1 − φ

)
e−ρut+1 + λhqt+1,t+1.

Setting qt+1,t+1 as in (12) implies Lt+1

(1−φ) = Lt

(1−φ) = 1.
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where cwt,s denotes the time-t consumption of a representative worker who was born at time s.

The left-hand side of (13) represents the present value of a worker’s consumption, while the

right hand side represents the present value of her income. Similarly, letting cet,s denote the

time-t consumption of a representative inventor who was born at time s, her intertemporal

budget constraint is

Es

∞∑

t=s

(1 − λ)t−s
(
ξt
ξs

)
cet,s =

1

λφ
Vs,s, (14)

where Vs,s is the time-s total market capitalization of new firms created at time s. The left-

hand side of Equation (14) is the present value of a representative inventor’s consumption,

while the right-hand side is the value of all new firms divided by the mass of new business

owners, λφ. To determine the total market value of firms created at time s, let Πj,s be the

present of profits from production of intermediate good j:

Πj,s =

[

Es

∞∑

t=s

(
ξt
ξs

)
πIj,t

]

. (15)

The total market capitalization of all new firms can then be written as

Vs,s = κ

∫ As

As−1

Πj,sdj +

(
1 −̟

̟

)
Es

∞∑

t=s+1

(
ξt
ξs

)
(1 − κ)̟t−s

∫ At

At−1

Πj,tdj. (16)

The first term in equation (16) is the value of the blueprints for the production of new

intermediate goods that are introduced by new firms (both “growth” and “value” firms) at

time s. Similarly, the latter term captures the value of “growth opportunities,” namely, the

value of blueprints to be received by growth firms in future periods.

2.5 Equilibrium

The definition of equilibrium is standard. To simplify notation, we let φe and φw denote the

fraction of entrepreneurs and workers in the population, respectively, so that

φi =





φ if i = e

1 − φ if i = w
. (17)

An equilibrium is defined as follows.
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Definition 1 An equilibrium is a collection of adapted stochastic processes {xj,t, LFt , cwt,s,
cet,s, ξt, pj,t, wt} with j ∈ [0, At] and t ≥ s such that

1. (Consumer optimality): Given ξt, the process cwt,s (respectively, cet,s) solves the opti-

mization problem (2) subject to the constraint (13) (respectively, constraint (14)).

2. (Profit maximization) The prices pj,t solve the optimization problem (8) given LFt ,

xj′ 6=j,t, wt and LFt , xj,t solve the optimization problem (6) given pj,t, wt.

3. (Market clearing). Labor and goods markets clear

LFt + LIt = (1 − φ) (18)

λ

t∑

s=−∞

∑

i∈{w,e}

(1 − λ)t−s φicit,s = Yt. (19)

Conditions 1 and 2 are the usual optimality conditions. Condition 3 requires that the

total labor demand LFt + LIt equals total labor supply 1 − φ. Finally, the last condition

requires that aggregate consumption be equal to aggregate output.

3 Solution

3.1 Equilibrium Output, Profit, and Wages

Consider the intermediate-goods markets. We first derive the demand curve of the final-good

firm for the intermediate input j at time t. Maximizing (6) with respect to xj,t, we obtain

xj,t = LFt

[
pj,t

ωj,tZtα

] 1
α−1

. (20)

Substituting this expression into (8) and maximizing over pj,t leads to

pj,t =
wt
α
, (21)
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while combining (20) and (21) yields

xj,t = LFt

[
wt

ωj,tZtα2

] 1
α−1

. (22)

Next, consider the labor markets. Maximizing (6) with respect to LFt gives the first order

condition

wtL
F
t = (1 − α)Yt. (23)

Substituting (22) into (3) and then into (23) and simplifying yields

wt =
(
α2
)α
(

1 − α

1 + χ

)1−α

ZtA
1−α
t . (24)

We substitute equation (24) into (22) and then into (18) to obtain

xj,t =
1 + χ

At

(
j

At

)χ
(1 − φ)α2

α2 + 1 − α
(25)

LFt =
1 − α

α2 + 1 − α
(1 − φ) . (26)

Finally, aggregate output is given by

Yt =
(α2)

α
(

1−α
1+χ

)1−α

α2 + 1 − α
(1 − φ)ZtA

1−α
t , (27)

which we derive by combining (25) and (26) inside (3). The number of intermediate inputs

(At) in equation (27) is raised to the power 1−α. This means that aggregate output is increas-

ing in the number of intermediate inputs. However, the sensitivity of output to the number

of inputs depends on the elasticity of substitution between different varieties of intermediate

goods. For instance, as α approaches 1, intermediate goods become perfect substitutes, and

larger variety of intermediate goods leads to more competition among firms and lower profits

for existing intermediate-good producers without changing the overall productive capacity

of the economy.

We now compute the income share of labor and the profits of firms. Total payments to

labor wt (1 − φ) are simply equal to a fraction (α2 + 1 − α) of output Yt, which follows from

(24) and (27). Because of constant returns to scale in the production of final goods, the
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profits of the representative final goods firm are πFt = 0. The profits from the production of

intermediate good j are

πIj,t = (1 + χ)

(
j

At

)χ
Yt
At
α (1 − α) , (28)

which is obtained by combining (25) and (21) with (8) and (24). Note that the time series

of profits πIj,t is not cointegrated with aggregate output Yt, since the variety of intermediate

goods At grows over time and hence asymptotically πIj,t/At → 0. As a result, dividends of an

individual firm are not co-integrated with aggregate output, which is intuitive because of the

constant arrival of competing firms. In comparison, aggregate profits are a constant fraction

of total output, as
∫ At
0
πIj,tdj = α (1 − α)Yt. This equality follows immediately from the fact

that, in a general-equilibrium framework, total income shares must add up to aggregate

output: wt (1 − φ) + πFt +
∫ At
0
πIj,tdj = Yt.

3.2 The Stochastic Discount Factor

To determine the stochastic discount factor ξt, we recall that, since agents face complete

markets after their birth, a consumer’s lifetime consumption profile can be obtained by max-

imizing (2) subject to a single intertemporal budget constraint (constraint [13] if the agent

is a worker and constraint [14] if the agent is an inventor). Attaching a Lagrange multiplier

to the intertemporal budget constraint, maximizing with respect to cit,s, and relating the

consumption at time t to the consumption at time s for a consumer whose birth date is s

gives

cit,s = cis,s

(
C

(1−ψ)(1−γ)
t

Cs(1−ψ)(1−γ)
β−(t−s) ξt

ξs

)− 1
γ

for i ∈ {e, w}. (29)

From this equation, the aggregate consumption at any point in time is

Ct = λ

t∑

s=−∞

∑

i∈{w,e}

(1 − λ)t−s φicis,s

(
C

(1−ψ)(1−γ)
t

Cs(1−ψ)(1−γ)
β−(t−s) ξt

ξs

)− 1
γ

, (30)
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where φi was defined in (17). Iterating forward once to obtain Ct+1 and then using (30)

gives

Ct+1 = (1 − λ)Ct

(
β−1 C

(1−ψ)(1−γ)
t+1

Ct(1−ψ)(1−γ)

ξt+1

ξt

)− 1
γ

+ λ
∑

i∈{w,e}

φicit+1,t+1. (31)

Dividing both sides of (31) by Ct, solving for ξt+1

ξt
and noting that Ct = Yt in equilibrium

leads to

ξt+1

ξt
= β

(
Yt+1

Yt

)−1+ψ(1−γ)


 1

1 − λ



1 − λ
∑

i∈{w,e}

φi
cit+1,t+1

Yt+1








−γ

. (32)

To obtain an intuitive understanding of equation (32) it is easiest to focus on the case ψ = 1,

so that agents have standard CRRA preferences. In this case, the stochastic discount factor

consists of two parts. The first part is β
(
Yt+1

Yt

)−γ
, which is the standard expression for the

stochastic discount factor in an (infinitely-lived) representative-agent economy. The second

part — the term contained inside square brackets in equation (32) — gives the proportion

of output at time t+1 that accrues to agents already alive at time t. To see this, note that

only a proportion 1− λ of existing agents survive between t and t+ 1, and that the arriving

generation claims a proportion 1−λ
∑

i∈{w,e} φ
i c
i
t+1,t+1

Yt+1
of aggregate output. The combination

of the two parts yields the consumption growth between t and t+ 1 of the surviving agents.

Equation (32) states an intuitive point: since (ignoring consumption externalities) only

agents alive at time t are relevant for asset pricing, it is exclusively their consumption growth

that determines the stochastic discount factor, not the aggregate consumption growth. We

elaborate on this point further in the next section.

To conclude the computation of equilibrium, we need to obtain an expression for the

term inside square brackets on the right-hand side of (32). This can be done by using the

intertemporal budget constraints (14) and (13). Proposition 1 in the Appendix shows that

1 − λ
∑

i∈{w,e}

φi
cit+1,t+1

Yt+1

= υ(ut+1; θ
e, θw, θb),
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with

υ(ut+1; θ
e, θw, θb) ≡ 1 − θeα (1 − α)

(
κ
(
1 − e−(1+χ)ut+1

)
+

(
1 −̟

̟

)
θb
)

(33)

−θw
(
α2 + 1 − α

) (
1 − (1 − λ) (1 + δ) e−ρut+1

)
,

and θe, θb, θw are three appropriate constants obtained from the solution of a system of three

nonlinear equations in three unknowns. Given the interpretation of υ(ut+1; θ
e, θw, θb) as the

fraction of consumption that accrues to new agents, we shall refer to it as the “displacement

factor”.

4 Qualitative Properties of the Equilibrium

The consumption externality aside, the stochastic discount factor in our model depends only

on the consumption of existing agents, as we show above using equation (32). Thus, the

standard version of the consumption CAPM (CCAPM), which relies on the aggregate con-

sumption series, does not hold. This is intuitive, since the total consumption of existing

agents at a future date is not equal to the aggregate consumption at that date, which in-

cludes consumption of the agents born in the interim. In this section, we explore qualitative

implications of our model for asset returns.

4.1 Equity Premium without Aggregate Risk

To highlight the departure from the standard CCAPM in our model, we consider a limiting

case of the model with no aggregate consumption risk. Specifically, suppose that σ = 0,

ρ > 0, and let α approach 1. Equation (27) implies that the volatility of aggregate output,

and aggregate consumption, approaches zero. Then, according to the standard CCAPM,

risk premia must vanish in the limit. This is not the case in our model, as shown in the

following lemma.
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Lemma 1 Assume that σ = 0, ρ > 0, κ = 1, and

1 > β (1 − λ)γ eµψ(1−γ)+ 1
2
σ2ψ2(1−γ)2 (34)

1 ≤ β (1 + δ)−γ eµψ(1−γ)+ 1
2
σ2ψ2(1−γ)2E[eργut+1 ]. (35)

Then an equilibrium exists. Letting Rt be the return of any stock,

lim
α→1

V ar (∆Yt+1) = 0 (36)

lim
α→1

∂ (ξt+1/ξt)

∂ut+1
> 0 (37)

lim
α→1

{
E(Rt) −

(
1 + rf

)}
> 0. (38)

Inequalities (34)–(35) define the set of admissible parameters and distribution functions.

These conditions are necessary and sufficient for the existence of an equilibrium.

The intuition behind Lemma 1 is straightforward. While the volatility of aggregate

consumption vanishes as α approaches 1, the volatility of existing agents’ consumption does

not. As α approaches 1, intermediate inputs behave more and more like perfect substitutes.

This implies that new innovations have a vanishing effect on aggregate output, and instead

lead to redistribution from old to young firms and from old to young agents (since ρ > 0).

Thus, innovation shocks (ut) are systematic consumption shocks from the perspective of

existing agents, but they are not aggregate shocks in the traditional sense. Since profits of

existing firms are exposed to the innovation shocks (ut), stock returns of existing companies

are correlated with consumption growth of existing agents and therefore command a risk

premium.

While the limiting case α = 1 is a special case of the model,5 the results in Lemma 1 illus-

trate why the standard aggregate CCAPM relationship can understate the risks associated

with investing in stocks.

5A caveat behind Lemma 1 is that in the limit α = 1 the profits of intermediate goods firms disappear.

Hence, even though the rate of return on a stock is well defined in the limit (because rates of return are

not affected by the level of dividends and prices), the limiting case α = 1 is of limited practical relevance.

However, it has theoretical interest, because it illustrates in a simple way the asset pricing implications of

the wedge between aggregate consumption and existing agents’ consumption.
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4.2 The Cross-Section of Stock Returns

The distinction between consumption of current agents and aggregate consumption is impor-

tant for understanding the cross-sectional patterns in stock returns, particularly the value

premium. Assume henceforth that κ < 1, so that “growth firms” receive a fraction of new

blueprints over time. The price-to-earnings ratio (P/E) for a typical value firm is Φ ≡ ΠIj,t
πI
j,t

,

where j is the index of any intermediate good in [0, At], and ΠI
t is given by (15). The ratio

does not depend on the index j, and thus all value firms have the same P/E, regardless of

which intermediate goods they produce. Since the increments to the (log) stochastic discount

factor and the increments to (log) profits of value firms are independent across time, Φ is a

constant.6 For any admissible set of parameter values, the stock price of a typical growth

firm is given by the following lemma.

Lemma 2 The (end of) period-t value of the representative “growth firm” created at time s

is given by

Pt,s = α (1 − α)Yt

[
(Φ − 1)Nt,s + (1 −̟)̟t−s θ

b

̟
Φ

]
, (39)

where

Nt,s = (1 − η)κ

(
As
At

)1+χ (
1 − e−(1+χ)us

)
+

t∑

n=s+1

(1 −̟) (1 − κ)̟n−(s+1)

(
An
At

)1+χ (
1 − e−(1+χ)un

)
.

The first term inside the square brackets in equation (39) is the value of all the blueprints

that the growth firm has received since its creation, or its assets in place, while the second

term is the value of the future blueprints it will receive, or the present value of its growth

opportunities. Thus, the return on a typical growth stock is a weighted average of the return

on assets in place and the return on growth opportunities. Specifically, based on (39), the

gross return on the representative growth firm Rg
t+1 at time t+1 is given by the dividends from

6We show this formally as part of the proof of Proposition 1.
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all the blueprints collected by the firm up to and including period t+1, α (1 − α)Yt+1Nt+1,s,

and the end-of-period price Pt+1,s, all divided by the beginning-of-period price Pt,s :

Rg
t+1,s ≡

α (1 − α)Yt+1Nt+1,s + Pt+1,s

Pt,s
.

Define the gross return of assets in place, which is the same as the return of a value firm in

our model, Ra
t+1, and the gross return of growth opportunities, Ro

t+1, as

Ra
t+1 =

(
Φ

Φ − 1

)(
πIj,t+1

πIj,t

)

, ∀j ∈ [0, At], (40)

Ro
t+1 = ̟

(
Yt+1

Yt

)
(1 − κ)

(
1 − e−(1+χ)ut+1

)
+ θb

θb
. (41)

Then, the rate of return on any growth firm can be expressed as

Rg
t+1,s =

(
1 − wot,s

)
Ra
t+1 + wot,sR

o
t+1, (42)

where wot,s is the relative weight of growth opportunities in the value of the firm, and is

obtained from Lemma 2 as

wot,s =
(1 −̟)̟t−s θb

̟
Φ

(Φ − 1)Nt,s + (1 −̟)̟t−s θb

̟
Φ
.

The value of assets in place and the value of growth opportunities of a firm have identical

exposures to the productivity shocks ǫt, but different exposures to the innovation shocks ut.

Specifically, combining (28) and (27) with (40) and (41), we obtain that the return on assets

in place has a negative loading on the innovation shock,
∂Rat+1

∂ut+1
< 0, while the return on the

growth-opportunity component of the firm value has a positive loading,
∂Rot+1

∂ut+1
> 0. Thus,

we conclude that there is a “value factor” in our model, i.e., a diversified portfolio with

long positions in value stocks and short positions in growth stocks is exposed to a source of

systematic risk, namely, the innovation shocks.

If consumption of existing agents falls in response to innovation, then their marginal

utility loads positively on innovation shocks, and hence ∂(ξt+1/ξt)
∂ut+1

> 0. Then, in equilibrium,

value stocks earn a higher average rate of return than growth stocks — in other words,
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our model produces a value premium.7 Intuitively, this is because the growth opportunities

embedded in growth stocks act as a hedge against innovation shocks and hence drive down

the expected return on growth stocks. Thus, the rationale behind the value premium in our

model is quite different from the explanations proposed previously.8 While in most of these

models the conditional CAPM holds, and value stocks earn higher average return because of

their higher exposure to the aggregate market risk factor, in our model there exists a distinct

risk factor affecting the return differential between value and growth stocks. We explore the

empirical implication that this risk factor is driven by innovation shocks in Section 5.

4.3 Relationship to CAPM

We now consider the relationship between the equilibrium stochastic discount factor in our

model and the CAPM. Without the consumption externality in preferences (ψ = 1), the

CAPM relationship holds in our model with respect to the total wealth of existing agents,

which includes both their stock holdings and their human capital. The reason is that the ratio

of consumption to total wealth is constant in our model, and hence a reasoning similar to the

one in Section 3.2 implies that when ψ = 1, the stochastic discount factor can be expressed

in terms of the growth rate of total wealth of existing agents.9 Since the two components

of total wealth (financial wealth and human capital) are not perfectly correlated, the stock

market cannot be used as a proxy for total wealth. This well-known critique of the empirical

implementations of the CAPM applies, at a theoretical level, within our model.

7Equation (37) of Lemma 1 shows that, if α is sufficiently close enough to 1, then value stocks earn higher

average returns than growth stocks. While Lemma 1 assumes that σ = 0, equation (37) continues to hold

when σ > 0, with a few minor modifications of the technical conditions of the lemma.
8A representative sample of papers employing time varying-single factor conditional beta models includes

Berk et al. (1999), Gomes et al. (2003), Carlson et al. (2004, 2006), and Zhang (2005)
9More generally, when ψ < 1, the stochastic discount factor is an exponential affine function of the

aggregate consumption growth and the wealth growth of existing agents.
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5 Quantitative Evaluation

In this section we explore an original implication of our model that individual consumption

exhibits cohort effects that are related to the cross-section of stock returns. We derive this

result within the model and perform empirical tests using microeconomic data and cohort

analysis.

5.1 Cohort Effects and Asset Returns

Econometric specification

According to the model, an individual agent’s consumption can be decomposed into cohort

effects (as) , time effects (bt), and individual-specific effects (εi, i ∈ {e, w}):

log cit,s = as + bt + εi, (43)

where, according to (29),

as =
∑

j∈{e,w}

φj log cjs,s +
1

γ
log
(
C(1−ψ)(1−γ)
s β−sξs

)
, (44)

bt = −1

γ
log
(
ξtβ

−tC
(1−ψ)(1−γ)
t

)
, (45)

εis = log cis,s −
∑

j∈{e,w}

φj log cjs,s. (46)

Equation (43) provides a basic testable implication of our model. In a model with un-

restricted transfers between altruistically linked generations, every agent’s consumption is

a constant proportion of the aggregate consumption regardless of her birth date.10 Conse-

quently, cohort effects are zero in such a model. By contrast, in our model consumption

exhibits non-zero cohort effects. The following lemma derives the dynamic behavior of these

cohort effects according to the model.

10Such a model is isomorphic to the standard infinitely-lived representative-agent model.
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Lemma 3 For any T ≥ 1, the cohort effect in individual consumption satisfies

as+T − as = −
T∑

i=1

log

(
υ (us+i)

1 − λ

)
+ zs+T − zs, (47)

where zs is a series of independently and identically distributed random variables defined by

zs = (1 − φ) log

(
cws,s
Ys

)
+ φ log

{
ces,s
Ys

}
.

Equation (47) implies that cohort effects should be non-stationary according to our model,

since the first term on the right hand side of (47) is a random walk with drift. The permanent

shocks to the consumption cohort effects (increments to the random walk component in (47))

reveal the unobserved displacement factor υ (us) . One can estimate the variance of these

permanent shocks, namely, the variance of log
(
υ(us)
1−λ

)
, by forming an estimate of the long-

run variance of first differences of the cohort effects ∆as — for instance, using a Newey-West

heteroscedasticity- and autocorrelation-consistent variance estimator.

Furthermore, our model implies a testable relationship between consumption cohort ef-

fects and stock returns. According to the model, the innovation shocks ut affect both the

displacement factor υ (ut) and the return spread between growth and value stocks. Equations

(40) and (41), together with (28) and (27), imply that the return spread between growth

opportunities and assets in place, Ro
t+1/R

a
t+1, is an increasing function of ut+1. Hence, for

any growth firm whose value contains a fraction wot of growth opportunities, we obtain

Rg
t+1/R

a
t+1 = 1 + wot

(
Rot+1

Rat+1
− 1
)

= f(ut+1), for an increasing function f(·). Finally, letting

l(x) be defined as l(x) ≡ − log (υ (f−1(x))), the consumption cohort effects can be related

to the cross-sectional differences in stock returns as

as+T − as =

T∑

i=1

l

(
log

Rg
s+i

Ra
s+i

)
+ T log (1 − λ) + zs+T − zs. (48)

(we use equation (47) to establish this relationship). Since the function υ (ut) is decreasing

in ut and the function f−1(x) is increasing in x, l(x) is an increasing function. Consequently,

the long-run covariance of ∆as and log (Rg
s/R

a
s) should be non-negative.
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Empirical results

We use CEX data from 1981-2003 provided on the NBER website11 to estimate consumption

cohort effects. We obtain a measurement of the consumption of each household over four

quarters, the year corresponding to the first observation quarter, and the age of the head

of household at that time. We define the cohort of households who were “born” in a given

year as all those households whose head was twenty years old in that year. Given these

measurements, it is possible to estimate equation (43).

Equation (43) takes the model’s predictions literally and omits some important effects

present in the data. Consumption in the model only features time and cohort effects, but

no age effects. One would expect the age effects to be present in the data either because

of borrowing constraints early in life, or because of changes in the consumption patterns of

households over the life cycle. For these reasons, we estimated (43) allowing for age effects.

We also included a control for (log) household size.12

Linear trends in age, cohort, and time effects cannot be identified separately if age effects

are included in (43).13 However, the exact identification of the linear trends is immaterial

for our purposes. As has been shown in the literature, it is possible to estimate differences

in differences of cohort effects (as+1−as− (as−as−1)) without any normalizing assumptions

11The CEX data on the NBER website were compiled by Ed Harris and John Sabelhaus. See

http://www.nber.org/ces cbo/Cexfam.pdf for a description of the data. We provide more details on the

data in the appendix.
12As a robustness check, we also adjust for family size by dividing by the average family equivalence scales

reported in Fernandez-Villaverde and Krueger (2007). Our empirical findings remain unchanged.
13Some of the literature addresses this problem by following Deaton and Paxson (1994) and making the

normalizing assumption that the time effects add up to zero and are orthogonal to the time trend. In our

model, the time effects bt follow a random walk and hence such an assumption is not appropriate.
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and even after including a full set of age dummies.14 This statement implies that there exists

a function of time a∗s such that, for any normalizing assumptions, the estimated cohort effects

âs are given by âs = β0 + β1s + a∗s. (The coefficients β0 and β1 are not identified and their

magnitude depends on the normalizing assumptions.)

According to our model, the de-trended cohort effects, a∗s, are non-zero. Hence, the

first hypothesis we test is that a∗s = 0. The three columns of Table 1 report the results of

estimating equation (43) including 1) no age effects, 2) parametric age effects, and 3) a full

set of age dummies. The model with parametric age effects is fitted by assuming that age

effects are given by a function h (age) which we parameterize with a cubic spline having

knots at ages 33, 45, and 61. The first row reports the results from a Wald test that the

de-trended cohort effects are zero, namely, that âs+1 − âs − (âs − âs−1) = 0 for all s. The

second row reports the associated p−values. As can be seen, the data strongly reject the

hypothesis that cohort effects are either non-existent or given by a deterministic linear trend,

and instead offers evidence of imperfect inter-generational risk sharing.

We document the magnitude of variation of cohort effects in consumption and their co-

movement with asset returns in Tables 2 and 3. These estimates help evaluate the economic

significance of cross-cohort variation in consumption, and we use them to calibrate the model

in Section 5.2.

The first two rows of Table 2 present estimates of the volatility of consumption cohort

effects under different ways of controlling for age effects. The first row contains estimates of

the standard deviation15 of the first differences in cohort effects (âs+1 − âs). As we discussed

14See McKenzie (2006) for a proof. The easiest way to see why, is to allow for age effects in equation (43),

consider the resulting equation log cit,s = as + bt + γt−s + εi, and observe that

E log cit+1,s+1 − E log cit+1,s −
(
E log cit,s − E log cit,s−1

)
= as+1 − as − (as − as−1) ,

where E() denotes the time t mean log consumption of an agent who belongs to cohort s. Replacing expec-

tations with the respective cross sectional averages shows how the differences in differences of cohort effects

(as+1 − as − (as − as−1)) can be estimated in the data.
15Since cohort effects are estimated rather than observed, we use only cohorts from 1927-1995 for the

calculations in Table 2, because cohorts prior to 1927 and after 1995 are not sufficiently populated. With this
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No age effects Parametric Age Effects Age Dummies

Wald Test ∆as+1 − ∆as = 0 31.3 4.21 4.25

p-value 0.000 0.000 0.000

Observations 52245 52245 52245

R-squared 0.373 0.382 0.384

Table 1: Results from regression of log consumption expenditure on time dummies (one dummy

for each quarter), a control for log(fam.size) and various specifications of cohort and age effects.

Cohort effects are included via cohort dummies. In the first specification the regression does not

contain age effects, while the second specification allows age effects parameterized via a cubic spline.

The third specification allows for a full set of age dummies. The Wald test refers to the test that

as+1−as−(as−as−1) = 0 for all s. Standard errors are computed using a robust covariance matrix

clustered by cohort and quarter. The CEX data are from 1980-2003 and include observations on

cohorts as far back as 1911.

above, permanent shocks to consumption cohort effects are closely related to the displace-

ment shocks in our model. The second row reports estimates of the standard deviation of

permanent shocks to consumption cohort effects. Here we fit an ARIMA (1,1,1) model to the

estimated cohort effects âs and use the methods of Beveridge and Nelson (1981) to estimate

the standard deviation of the permanent component of âs. We report two additional esti-

mates of the standard deviation of permanent shocks. The third row contains Newey-West

estimates of the long-run variance of the first differences in âs using 10-year autocovariance

lags. In the fourth row, we report the standard deviation of differences between consumption

choice of sample, the minimal cohort has 199 observations, the first quartile of cohorts has 521 observations

and the median cohort has 657 observations. Accordingly, cohorts are sufficiently well populated so that our

variance estimate of the first differences of cohorts is unlikely to be materially affected by measurement error.

We would also like to point out that our estimates of the variance of permanent components of cohort effects

are less affected by (i.i.d) measurement error than the variance of first differences, because heteroscedasticity-

and autocovariance-consistent variance estimators control for the moving-average error structure introduced

by the noisy measurement of first differences.
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Param. Age Effects Age Dummies

Std. Dev. (Cohort−Lagged Cohort) 0.030 0.030

Std. Dev. (Perm. Component (Newey West)) 0.020 0.020

Std. Dev. (Perm. Component (Beveridge Nelson)) 0.021 0.023

Std. Dev. (Perm. Component
√

10(10-year Aveg)) 0.019 0.018

Cov(coh.diffs; FF)
Var( coh.diffs)

(Newey West) 3.39 3.92

Cov(10-year coh.diffs; 10-year FF)
Var(10-year coh.diffs)

2.93 3.43

Observations 68 68

Table 2: Various moments of the permanent components of the estimated cohort effects.

cohorts evaluated at ten-year intervals, normalized by
√

10. All three alternative estimates

of the volatility of the permanent component of the cohort effects are similar. Consumption

cohorts exhibit substantial variability, which is comparable to the volatility of aggregate

consumption growth over the same period. This shows that displacement risk should have

economically significant impact on pricing of risk in the economy.

We now relate increments in consumption cohort effects to cross-sectional differences in

stock returns. The solid line in Figure 2 depicts the estimated cohort effects. As can be

seen from the figure, these cohort effects are persistent, in line with the results reported

in the first two rows of Table 2. The dashed line depicts
∑T

i=1 log
(
Rg
t+i/R

a
t+i

)
, where we

have used the negative of the logarithmic gross return associated with the HML factor of

Fama and French (1992) as a measure of log
(
Rg
t+i/R

a
t+i

)
and have removed a linear trend16.

According to equation (48), the consumption cohort effects should be co-trending with the

sum of an appropriate non-linear increasing function l(log
(
Rg
t+1/R

a
t+1

)
). Assuming that l(·)

is reasonably well approximated by an affine first order Taylor expansion, cohort effects and

cumulative (log) returns on a growth-value portfolio should be co-trending, as the picture

suggests.

16We report the cohort effects from 1927 onward, since data on the Fama-French HML factor are available

from 1927 onward. We also report results up to 1995 because of the sparsity of data on cohorts post 1995.
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Figure 2: Consumption cohort effects and cumulative returns on a growth-value portfolio

(negative of the HML factor) after removing a constant time trend from both series and

multiplying the latter series by a scalar to fit in one scale. A full set of age dummies was

used in estimating the consumption cohort effects.

To quantify the displacement-risk exposure of stocks, we estimate the covariance be-

tween the innovations to the permanent components of consumption cohorts, as, and the

permanent components of the stock-return differential between growth and value stocks,
∑s

i=1 log
(
Rg
t+i/R

a
t+i

)
, to which we refer as the long-run covariance. According to Equation

(48), this long-run covariance is a measure of cov(log (Rg
t /R

a
t ) , log υ (ut)), i.e., it is a measure

of the displacement-risk exposure of the HML factor. We estimate the long-run covariance

using a multivariate Newey-West estimate17 of the covariance between the growth-value re-

turns, defined as the negative of the logarithmic gross return on the HML factor, and the first

17We use 10 lags in the computation.
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differences of the estimated cohort effects. The fifth row of Table 2 reports this covariance,

normalized by the long-run variance of the consumption cohort effects as obtained in the

second row of the table. As a robustness check, we also report in the final row of the table

the results from computing the covariance of 10-year consumption cohort differences and 10-

year cumulative returns on the growth-value returns, normalized by the variance of 10-year

consumption-cohort differences. To interpret these numbers, note that since the standard

deviation of the permanent component of cohort effects is about 0.02 and the respective

number for the HML factor is about 0.12, the implied correlation between the permanent

components of the two series is 3.92 × 0.02/0.12 = 0.65. Therefore, the HML factor has

significant displacement-risk exposure.

Table 3 reports further results on the relationship between consumption cohort effects

and stock returns. This table shows that the displacement-risk exposure can help explain

differences in average stock returns across the book-to-market deciles. Specifically, the first

row in Table 3 reports the average difference between the (log) gross return on the first nine

book-to-market decile portfolios and the respective return on the 10th-decile portfolio. The

second row of Table 3 reports the long-run covariance between these return differences and

the increments of the permanent component of (log) consumption cohort effects, normalized

by the long-run variance of the latter. This is the same measure of displacement-risk exposure

as reported for the HML factor in the fifth row in Table 2. Stocks in low book-to-market

deciles (growth stocks) have lower average returns than stocks in high book-to-market deciles

(value stocks), which is a well-known value premium. The last row of the table shows that

displacement-risk exposure decreases across the book-to-market deciles, which means that

growth stocks offer a hedge against the displacement risk.

In addition to testing the empirical implications of the model for consumption and stock

returns, we also report empirical evidence that relates to the model’s mechanism. In par-

ticular, since the displacement risk in the model is generated by shocks to agent’s human

capital, we estimate cohort effects in individual income and relate them to the stock market

returns, in the same manner as we do with consumption cohort effects. Applying a similar
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1 -10 2-10 3-10 4-10 5-10 6-10 7-10 8-10 9-10

-0.033 -0.020 -0.023 -0.028 -0.015 -0.011 -0.016 0.005 0.009

6.293 7.162 5.609 4.995 5.125 4.184 3.090 3.474 2.636

Table 3: Average return differences between book-to-market decile portfolios sorted along their

long-run covariances with consumption cohort innovations. The first row reports average annual

return differences. Label n−10 denotes the average difference between the (log) gross return on the

nth decile portfolio and the 10th decile portfolio. The second row reports the long-run covariance

between the return differences and innovations in the permanent component of (log) consumption

cohort effects, normalized by the long-run variance of the latter. Covariances and variances are

computed using the Newey-West approach with 10 lags. The data on return differentials are from

the website of K. French (annual 1927-2007).

argument to the one that led to equation (43), equations (11) and (12) imply the presence

of cohort effects in income data that should be correlated with the cumulative return of a

growth-value portfolio. Figure 3 is analogous to Figure 2, with consumption replaced by

agents’ disposable income net of dividends, rents, and interest. This picture confirms that,

in agreement with the model, the qualitative properties that hold for consumption cohort

effects also hold for earned income cohort effects.

5.2 Calibration

Our empirical results suggest that the key predictions of the model are qualitatively consis-

tent with the data. In this section we assess whether the model can account quantitatively

for the empirical relationships between asset returns, aggregate consumption growth, and

individual consumption cohort effects.

Our parameter choices are summarized in Table 4. The values of µ and σ are chosen to

match the moments of aggregate consumption growth. The parameter α controls the share

of profits in aggregate income in the model, according to equation (21). We set α = 0.8,
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Figure 3: Earned (log) income cohort effects and cumulative returns on a growth-value

portfolio (negative of the HML factor) after removing a constant time trend from both series

and multiplying the latter series by a scalar to fit on one scale. A full set of age dummies was

used in estimating the income cohort effects. The regression was estimated with post-war

cohorts (1947 onward) to avoid discontinuities in earned income that arise at the retirement

age of 65.

which implies a profit share of 16%. In yearly NIPA data for the U.S. since 1929, the average

share of (after depreciation) profits and interest payments is about 15% of national income,

or 18% if one imputes that 1/3 of proprietor’s income is due to profits.18 The parameter λ

18Since in our model there is no financial leverage, it seems appropriate to combine dividend and interest

payments. Moreover, it also seems appropriate to deduct depreciation from profits, because otherwise the

relative wealths of agents e and w would be unduly affected by a quantity that should not be counted

as income of either. We note here that our choice of a profit share of 16 percent is consistent with the

real business cycle literature, which assumes a capital share (i.e. profits prior to depreciation) of 1/3 and
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is chosen to capture the arrival of new agents. In post-war data, the average birth rate is

about 0.016. Immigration rates are estimated to be between 0.002− 0.004, which implies an

overall arrival rate of new agents between 0.018 and 0.02. We take the time-discount factor

to be close to 1, since in an overlapping generations model the presence of death makes the

“effective” discount factor of agents equal to β(1−λ).Given a choice of λ = 0.02, the effective

discount rate is 0.98, which is a standard choice in the literature. The constant ψ influences

the growth rate of agents’ marginal utilities, and hence is important for the determination of

interest rates. We choose ψ = 0.5 in order to approximately match observed interest rates.

On behavioral grounds, this assumption implies that an individual places equal weights on

his own consumption and on his consumption relative to the aggregate.

In the real world, income is hump shaped as a function of age, whereas in the model age

effects are assumed to follow a geometric trend. Fortunately, it is straightforward to account

for arbitrary age-earnings profiles, after observing that any path of earnings over the life

cycle matters for general-equilibrium outcomes only to the extent that it affects the present

value of income at birth.19 For this reason we use the age-earnings profiles that we observe in

the data and we calibrate δ so that the present value of income using the age-earnings profile

in the data and the present value of income using a simple geometric trend with parameter

δ coincide inside the model. Specifically, we use the estimated age-(log) earnings profiles of

Hubbard et al. (1994) and determine δ so that

Es

∞∑

t=s

(1 − λ)t−s
(
ξt
ξs

)(
wt
ws

)
(1 + δ)t−s

(
At
As

)−ρ

= Es

∞∑

t=s

Λt−sG(t− s)

(
ξt
ξs

)(
wt
ws

)(
At
As

)−ρ

,

deducts investment from gross profits to obtain dividends. Since in stochastic steady state, investment and

depreciation are typically close to each other, the share of net output that accrues to equity holders is

approximately equal to the number we assume here.
19This is due to the fact that agents are not subject to borrowing constraints, so that agents’ optimal

consumption paths only depend on the present value of their initial endowments. Accordingly, the stochastic

discount factor depends on assumptions of age-earnings profiles only to the extent that they affect the present

value of agents’ endowments at birth.
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β 0.999 k 0.25

ψ 0.5 ν 0.05

µ 0.015 ρ 0.9

σ 0.032 κ 0.9

α 0.8 χ 4

λ 0.018 ω 0.87

δ 0.012 η 0.9

Table 4: Baseline parameters used in the calibration.

where Λt−s is an agents’ survival probability at age t− s obtained from the National Center

for Health Statistics and G(t− s) is the age-(log) earnings profile, as estimated by Hubbard

et al. (1994).

Innovation shocks ut follow a Gamma distribution with parameters k and ν. Parameters

ρ and χ control the exposures of labor and dividend income to the shock ut. We choose k, ν,

ρ, and χ jointly to match a) the volatility of the permanent component of consumption cohort

effects as reported in Table 2, b) the volatility of the permanent component of income cohort

effects,20 c) the volatility of aggregate dividends, and d) the correlation between aggregate

dividends and aggregate consumption.

The parameter κ controls the proportion of growth opportunities owned by existing firms,

which are therefore tradeable, while ̟ controls the term structure of existing firms’ growth

opportunities (high ̟ means that growth opportunities are front-loaded). As a consequence,

these two parameters jointly determine the aggregate price-to-earnings ratio, as well as the

properties of growth firms. We therefore calibrate them to the aggregate price-to-earnings

ratio and the long-run covariance between HML returns and changes in the permanent

component of consumption cohort effects. We chose this covariance as a target in calibration

20We obtain the permanent component of income cohort effects by using earned log income on the left-

hand side of Equation (43), estimating the resulting cohort effects and isolating their permanent component,

as we did for consumption.
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because of its importance in determination of the value premium.

Parameter η affects only the relative weight of assets in place and growth opportunities

in firms’ values, and thus the cross-sectional dispersion of valuation ratios. We calibrate it

to match the spread in price-to-earnings ratios between the top and the bottom price-to-

earnings deciles of firms.

We treat the risk-aversion coefficient γ as a free parameter and examine the model’s

ability to match a number of moments of asset returns and fundamentals for a range of values

of γ. Since we are attempting to match more moments than parameters, it is impossible

to obtain an exact fit, but the model fits the empirical moments quite well. As can be

seen in Table 5, with γ = 10 the model can match about 66% of the equity premium and

about 80% of the value premium. As γ increases to 12, the model does well in almost

all dimensions. In interpreting these results, it should be noted that the model has no

financial leverage, which, as Barro (2006) argues, implies that the unlevered equity premium

produced by the model should account for two thirds of the levered equity premium estimated

empirically. Moreover, in the model, there is no time-variation in interest rates, stock return

volatility, and conditional equity premium. Therefore, it is not surprising that the model

needs relatively high levels of risk aversion to match the data. However, even in the absence

of time-varying conditional moments of returns, levels of risk aversion around 10 explain a

non-trivial fraction of asset-pricing data. Therefore, the evidence in Table 5 suggests that

the model’s mechanisms are quantitatively powerful enough to match the salient moments

of asset returns and macroeconomic fundamentals.

5.3 Discussion

Inspecting the mechanism

In this section, we attribute the quantitative performance of our model to its key ingredients.

Our model produces large equity and value premia for three reasons. First, current

agents’ consumption growth is more volatile than aggregate consumption growth because of

the displacement risk. Second, current firms’ dividends are more sensitive to the displacement
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Data γ = 10 γ = 12 γ = 15

Aggregate (log) Consumption Growth rate 0.017 0.017 0.017 0.017

Aggregate (log) Consumption Volatility 0.033 0.032 0.032 0.032

Riskless Rate 0.010 0.022 0.015 0.014

Equity premium 0.061 0.040 0.051 0.062

Aggregate Earnings / Price 0.075 0.103 0.108 0.119

Dividend Volatility 0.112 0.10 0.101 0.101

Correl. (divid. growth, cons.growth) 0.2 0.189 0.189 0.189

Std (∆αperm
s ) 0.023 0.024 0.024 0.023

cov(∆αperm
s ,logRg−logRa)
var(∆αperm

s )
3.92 4.226 4.378 4.598

Std (∆wperm
s ) 0.022 0.023 0.023 0.023

Earnings / Price 90th Perc. 0.120 0.11 0.118 0.132

Earnings / Price 10th Perc. 0.04 0.041 0.039 0.041

Average Value premium 0.081 0.064 0.081 0.097

Std (Value Premium) 0.120 0.104 0.105 0.105

E (logRg − logRa) 0.102 0.121 0.141

Table 5: Data and model moments for different values of risk aversion γ. Data on con-

sumption, the riskless rate, the equity premium, and dividends per share are from Campbell

and Cochrane (1999). Data on the aggregate E/P ratio are from the long sample (1871-

2005) on R. Shiller’s website. The E/P for value and growth firms are the respective E/P

ratios of firms in the bottom and top book-to-market deciles from Fama and French (1992).

The value premium is computed as the difference in value weighted returns of stocks in

the top and bottom book-to-market deciles, available from the website of Kenneth French.

Std (∆αperm
s ) denotes the standard deviation of the permanent component of consumption

cohort effects as estimated in Table 2. Std (∆wperm
s ) refers to the cohort effects of earned

income. E (logRg − logRa) is the expected return difference between assets in place and

growth opportunities.
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risk factor than current agents’ consumption. Third, there is co-skewness between current

firms’ dividend growth and current agents’ consumption growth.

A simple back-of-the-envelope calculation helps illustrate the magnitude of each factor.

Taking logarithms of the pricing kernel in equation (32 ), using (5), (27), and the definition

of υ(ut+1) in equation (33) leads to

∆ log ξt+1 +const = (−1+ψ (1 − γ))εt+1 −γυ(ut+1)+(−1+ψ (1 − γ)) (1 − α)ut+1. (49)

At the same time, the stochastic component of the aggregate dividend growth equals

εt+1 + h(ut+1) for some function h.21 Given our choice of parameters ψ = 0.5, γ = 10 and

σ = 0.032, the standard deviations of the first term in (49) is 0.18; the standard deviation of

υ(ut+1) is 0.023, so that of the second term is 0.23; and the last term has a standard deviation

of 0.03. Thus, the standard deviation of the sum of the last two terms is approximately 0.2.

The standard deviation of dividend growth is approximately 0.1, and that of ε is 0.032, which

means that h(ut+1) has a standard deviation of
√

0.12 − 0.0322 = 0.095. Since the price-to-

dividend ratio is constant, the volatility of market returns is the same as the volatility of

dividend growth.

If εt+1 and ut+1 (and therefore υ(ut+1), approximately) were jointly normally distributed,

then the equity premium would equal approximately 0.18×0.032+0.2×0.095 = 0.025. The

difference between this number and the equity premium of 0.04 in our base-case calibration

owes to the fact that shock ut+1 is not Gaussian, making the consumption growth of existing

agents and the stock market returns co-skewed.

This back-of-the-envelope calculation shows that the high equity premium in our model

is not due to the fact that consumption of existing agents is excessively volatile. The total

volatility of existing agents’ consumption is approximately equal to 0.039, which is not far

from the aggregate volatility of 0.032.

Our model generates high volatility of stock market returns despite the low volatility of

21According to equation (28), h(x) = −(1+χ)x for the existing value firms. However, since the dividends

of existing growth firms also include the dividends from the blueprints that are created within the period, h

is generally different.
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consumption growth. This is explained by the joint dynamics of dividends and consumption

in our model. Specifically, future dividends of existing firms are not co-integrated with

future aggregate consumption, or even existing agents’ consumption. Because of this lack

of co-integration, dividend growth can be much more volatile than consumption growth,

with both driven by permanent shocks. Nevertheless, the long-run dynamics of dividends

and consumption are mutually consistent. Dividends of existing firms become a negligible

fraction of aggregate consumption over time, while the aggregate dividends paid by all firms

at any point in time are a constant fraction of aggregate consumption.

Our model not only produces a sizeable equity premium, but also an interest rate that is

constant and low. The reasons are that a) current agents’s consumption has a slightly lower

mean growth rate (1.5%) than aggregate consumption (1.7%) and is more volatile (3.9%)

than aggregate consumption (3.2%), and b) external habit formation (captured by ψ) implies

that agents’ marginal utility of consumption declines more slowly than suggested solely by

risk aversion and consumption growth.

More general endowment processes

We simplify some aspects of the model for tractability. One of the stylized assumptions is

that innovating agents receive their blueprints “at birth.” In reality, it takes time to start a

new firm, and each cohort of agents does not innovate simultaneously. Moreover, innovation

shocks ut are more likely to follow a moving average process rather than being independent,

as we assume. We provide a simple example to illustrate why such frictions and perturbations

of the baseline model are unlikely to affect our conclusions about the long-run properties of

the model-implied asset returns.

Suppose that all agents are born as workers with an initial endowment of labor efficiency

units of h (1 − φ) qs,s. Furthermore, suppose that a fraction φ of them become entrepreneurs

in the second period of their lives and permanently drop out of the workforce, whereas the

ones that remain workers have an endowment of labor efficiency units equal to the baseline
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model from the second period of their lives onward, namely h(1+ δ)t−sqt,s for all t ≥ s+ 1.22

Finally, assume that agents can only access financial markets in the second period of their

lives, while in the first period they consume their wage income. These assumptions capture

the idea that an agent’s “birth” cohort and the date at which that agent innovates may not

coincide. Moreover, exclusion from markets captures in a stylized manner the idea that the

agent cannot smooth consumption between the “birth” date and the innovation arrival date.

Repeating the argument of Section 3.2, the equilibrium stochastic discount factor in this

modified setup is

ξt+1

ξt
= β

(
Yt+1

Yt

)−1+ψ(1−γ)

υ̂(ut+1, ut)
−γ,

where

υ̂(ut+1, ut) = (1 − λ)−1

(
1 − λyt

Ct

)−1


1 − λ (1 − λ)
∑

i∈{w,e}

φi
cit+1,t

Ct+1

+ λ
yt+1

Ct+1





and yt denotes an agent’s initial wage income. Furthermore, the same reasoning as in the

proof of Lemma 2 implies that the variance of the permanent component of (log) consumption

cohort effects equals V ar (υ̂(ut+1, ut)).

This simple example illustrates the fact that the frictions affecting agents’ life-cycle of

earnings change the transitory dynamics of cohort effects, returns, and the stochastic discount

factor. Such frictions do not alter our main qualitative conclusion that the permanent

component of cohort effects reflects the permanent component of the displacement factor, as

reflected in the stochastic discount factor.

22Note that since agents are born with h (1 − φ) qs,s rather than hqs,s efficiency units, the total supply of

labor efficiency units remains equal to the baseline model.
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Appendix

A Auxiliary Results and Proofs

Proposition 1 Let ζ be defined as

ζ ≡ β (1 − λ)γ eµψ(1−γ)+σ2

2
ψ2(1−γ)2

and consider the solution to the following system of three equations in three unknowns θe, θw,

and θb

θe =
1 − ζEt

[
eψ(1−α)(1−γ)ut+1υ(ut+1; θ

e, θw, θb)1−γ
]

1 − ζEt [e((1−α)ψ(1−γ)−(1+χ))ut+1υ(ut+1; θe, θw, θb)−γ]
(50)

θw =
1 − ζEt

[
eψ(1−α)(1−γ)ut+1υ(ut+1; θ

e, θw, θb)1−γ
]

1 − ζ (1 − λ) (1 + δ)Et [e((1−α)ψ(1−γ)−ρ)ut+1υ(ut+1; θe, θw, θb)−γ]
(51)

θb =
̟ζEt

[
e(1−α)ψ(1−γ)ut+1υ(ut+1; θ

e, θw, θb)−γ
(
1 − e−(1+χ)ut+1

)
(1 − κ)

]

1 −̟ζEs [e(1−α)ψ(1−γ)ut+1υ(ut+1; θe, θw, θb)−γ]
. (52)

Here,

υ(x; θe, θw, θb) ≡ 1 − θeα (1 − α)

(
κ
(
1 − e−(1+χ)x

)
+

(
1 −̟

̟

)
θb
)

(53)

−θw
(
α2 + 1 − α

) (
1 − (1 − λ) (1 + δ) e−ρx

)
.

Assuming positivity of the numerators and denominators in (50) and (51) and positivity of

the denominator in (52), there exists an equilibrium with stochastic discount factor

ξt+1

ξt
= β

(
Yt+1

Yt

)−1+ψ(1−γ) [
1

1 − λ
υ(ut+1; θ

e, θw, θb)

]−γ
. (54)

Proof of Proposition 1. To prove Proposition 1 we conjecture that the expression
cit+1,t+1

Yt+1
is exclusively a function of ut+1, and then confirm our conjecture based on the resulting

expression for ξt+1

ξt
. To start, we note that if

cit+1,t+1

Yt+1
is exclusively a function of ut+1, then an

appropriate function f(ut+1) exists such that the stochastic discount factor is given by ξt+1

ξt

= β
(
Yt+1

Yt

)−1+ψ(1−γ)

× f(ut+1).
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To determine cit+1,t+1 for a worker (i = w) under this conjecture for ξt+1

ξt
we use (29),

(11), and the fact that ht,s = h (1 + δ)t−s inside the intertemporal budget constraint (13) to

obtain

cws,s = hs,sqs,sws




Es
∑∞

t=s (1 − λ)t−s
(
ξt
ξs

)(
wt
ws

)
(1 + δ)t−s

(
At
As

)−ρ

Es
∑∞

t=s (1 − λ)t−s
(
ξt
ξs

)(
Y

(1−ψ)(1−γ)
t

Y
(1−ψ)(1−γ)
s

β−(t−s) ξt
ξs

)− 1
γ



 . (55)

Under our conjecture the expression ξt+1/ξt is a deterministic function of εt+1 and ut+1, and

it follows that the distribution of ξt
ξs

for t ≥ s depends only on t − s. The same is true for

At/As and for wt/ws (by equation [24]). Therefore, the expectations in both the numerator

and the denominator inside the square brackets of equation (55) are time-invariant constants.

Hence, using (11) we can express (55) as

cws,s = h
(
1 − (1 − λ) (1 + δ) e−ρus

)
wsθ

w, (56)

where θw is defined as

θw ≡
Es
∑∞

t=s (1 − λ)t−s
(
ξt
ξs

)(
wt
ws

)
(1 + δ)t−s

(
At
As

)−ρ

Es
∑∞

t=s (1 − λ)t−s
(
ξt
ξs

)(
(Yt/Nt)

(1−ψ)(1−γ)

(Ys/Ns)
(1−ψ)(1−γ)β−(t−s) ξt

ξs

)− 1
γ

. (57)

The initial consumption of new business owners, who are born at time s, can be computed

in a similar fashion. To start, we observe that

Πs = πIs

[

Es

∞∑

t=s

(
ξt
ξs

)(
πIt
πIs

)]

, (58)

Our conjecture on ξt+1

ξt
, together with (28), implies that the expression inside square brackets

in (58) is a constant. Observing that As − As−1 = As (1 − e−us) (from [9]) and that
∫ As
As−1

πIj,sdj = (1 − e−us)α (1 − α)Ys (from [28]), and using (58) inside (16) gives

Vs,s = α (1 − α)Ys ×
{
Es

∞∑

t=s

(
ξt
ξs

)(
πIt
πIs

)}

×
{

κ
(
1 − e−(1+χ)us

)
+

(
1 −̟

̟

)
Es

∞∑

t=s+1

(
ξt
ξs

)(
Yt
Ys

)
(1 − κ)

(
1 − e−(1+χ)ut

)
̟t−s

}

.
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It will be useful to define

θe ≡
Es
∑∞

t=s

(
ξt
ξs

)(
πIt
πIs

)

Es
∑∞

t=s (1 − λ)t−s
(
ξt
ξs

)(
(Yt/Nt)

(1−ψ)(1−γ)

(Ys/Ns)
(1−ψ)(1−γ)β−(t−s) ξt

ξs

)− 1
γ

(59)

and

θb ≡ Es

∞∑

t=s+1

(
ξt
ξs

)(
Yt
Ys

)
(1 − κ)

(
1 − e−(1+χ)ut

)
̟t−s. (60)

The maintained conjecture that ξt+1/ξt is a deterministic function of εt+1 and ut+1 and

equation (28) imply that θe and θb are both constants. Using (29) inside (14),

ces,s =
θe

φ

α (1 − α)Ys
λ

{
κ
(
1 − e−(1+χ)us

)
+

(
1 −̟

̟

)
θb
}
. (61)

Combining (56) and (61) and noting that s in equations (61) and (56) is arbitrary, we obtain

∑

i∈{w,e}

φi
cit+1,t+1

Yt+1

= θe
1

λ

{
κ
(
1 − e−(1+χ)ut+1

)
+

(
1 −̟

̟

)
θb
}
α (1 − α) (62)

+hθw
(
1 − (1 − λ) (1 + δ) e−ρut+1

) (
α2 + 1 − α

)
,

which is a deterministic function of ut+1. Using (62) and h = 1/λ inside (32) verifies the

conjecture that there exists an equilibrium with ξt+1

ξt
= β

(
Yt+1

Yt

)−1+ψ(1−γ)

× f(ut+1) where

f(ut+1) is given by f(ut+1) =
[

1
1−λ

υ(ut+1; θ
e, θw, θb)

]−γ
. This proves equation (54).

To obtain equations (50), (51) and (52) we start by using (54) to compute the term inside

square brackets in equation (58). Since
(
ξi+1

ξi

)(
πIi+1

πIi

)
is an i.i.d random variable for any i,

it follows that

Es

∞∑

t=s

(
ξt
ξs

)(
πIt
πIs

)
=

∞∑

t=s

Es

(
ξt
ξs

)(
πIt
πIs

)
=

∞∑

t=s

Es

t−1∏

i=s

(
ξi+1

ξi

)(
πIi+1

πIi

)

=
∞∑

t=s

t−1∏

i=s

Es

(
ξi+1

ξi

)(
πIi+1

πIi

)
=

∞∑

t=s

[
Es

(
ξs+1

ξs

)(
πIs+1

πIs

)]t−s

=
1

1 −Es

(
ξs+1

ξs

)(
πIs+1

πIs

) (63)

=
1

1 − ζEs [e((1−α)ψ(1−γ)−(1+χ))us+1υ(us+1; θe, θw, θb)−γ]
,

41



where the last equality follows from (54):

Es

[
ξs+1

ξs+1

πs
πs

]
= βEs

[(
Zs+1e

(1−α)us+1
)ψ(1−γ)−1 (

Zs+1e
−(α+χ)us+1

)]

= βEs

[
Z
ψ(1−γ)
s+1 e((1−α)ψ(1−γ)−(1+χ))us+1

]
.

Following a similar reasoning,

Es

∞∑

t=s

(1 − λ)t−s
(
ξt
ξs

)(
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ws

)
(1 + δ)t−s

(
At
As

)−ρ

=
1

1 − (1 − λ) (1 + δ) ζEs [e((1−α)ψ(1−γ)−ρ)us+1υ(us+1; θe, θw, θb)−γ]
(64)

and

Es

∞∑

t=s

(1 − λ)t−s
(
ξt
ξs

)(
Y

(1−ψ)(1−γ)
t

Y
(1−ψ)(1−γ)
s

β−(t−s) ξt
ξs

)− 1
γ

=
1

1 − ζEs [eψ(1−α)(1−γ)us+1υ(us+1; θe, θw, θb)1−γ]
. (65)

Finally,

Es

∞∑

t=s+1

(
ξt
ξs

)(
Yt
Ys

)(
1 − e−(1+χ)ut

)
(1 − κ)̟t−s

= Es
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[
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(
ξi
ξi−1

)(
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)
̟

]
(
1 − e−(1+χ)ut

)
(1 − κ)

=

∞∑

t=s+1

Es

{[
t−1∏

i=s+1

(
ξi
ξi−1

)(
Yi
Yi−1

)
̟

](
ξt
ξt−1

)(
Yt
Yt−1

)
̟
(
1 − e−(1+χ)ut

)
(1 − κ)

}

(66)

=

{
∞∑

t=s+1

{
t−1∏

i=s+1

Es

(
ξi
ξi−1

)(
Yi
Yi−1

)
̟

}}

× Et

[(
ξt+1

ξt

)(
Yt+1

Yt

)
̟
(
1 − e−(1+χ)ut+1

)
(1 − κ)

]

=
̟ζEs

[
e(1−α)ψ(1−γ)us+1υ(us+1; θ

e, θw, θb)−γ
(
1 − e−(1+χ)us+1

)
(1 − κ)

]

1 −̟ζEs {e(1−α)ψ(1−γ)us+1υ(us+1; θe, θw, θb)−γ}
Combining (66) with (60) leads to (52). Similarly, combining (59) with (65) and (63) leads

to (50), while combining (57), (64), and (65) implies (51).

Proof of Lemma 1. To establish that the equity premium is non-zero in the limit, it

suffices to show that

lim
α→1

cov {Rt, (ξt+1/ξt)} 6= 0. (67)
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Since κ = 1, all stocks have rate of return

Rt =

(
πIt+1/π

I
t

)
+ (Πt+1/πt+1)

Πt/πt
.

Equation (58) implies that (Πt/πt) is a constant. Therefore, in order to establish (67) it

suffices to show that limα→1 cov
{(
πIt+1/π

I
t

)
, (ξt+1/ξt)

}
6= 0. To see that this is the case note

that limα→1

(
πIt+1/π

I
t

)
= eµ−(1+χ)ut+1. Hence, in order to establish (67), we need to show that

ξt+1/ξt is a non-degenerate function of ut+1 as α→ 1. Given that

lim
α→1

(
ξt+1

ξt

)
= β (1 − λ)γ eµ(−1+ψ(1−γ))

[
1 − θw

(
1 − (1 − λ) (1 + δ) e−ρut+1

)]−γ
, (68)

the lemma holds as long as a solution θw > 0 exists to Equation (51), an equation that

simplifies to

θw
(
1 − ζ (1 − λ) (1 + δ)E

[
e−ρu

(
1 − θw

(
1 − (1 − λ) (1 + δ) e−ρut

))−γ])

= 1 − ζE
[(

1 − θw
(
1 − (1 − λ) (1 + δ) e−ρut

))1−γ]
. (69)

By expanding the right-hand side of (69), the equation further simplifies to

1 = ζE
[(

1 − θw
(
1 − (1 − λ) (1 + δ) e−ρut

))−γ]
. (70)

As the right-hand side increases in θw, and the probability of the event {ut ∈ (0, ǫ)} is strictly

positive for all ǫ > 0, conditions (34) and (35) are necessary and sufficient for the existence

of a solution θw > 0. (Note that θw ≤ 1.)

Proof of Lemma 2. The value of a growth firm is given by the value of all its assets

in place and all its growth options.

Pt,s = (1 − η)κ

(∫ As

As−1

ΠI
j,tdj

)
+

t∑

n=s+1

(1 −̟) (1 − κ)̟n−(s+1)

(∫ An

An−1

ΠI
j,tdj

)

+ (1 −̟)

[
Et

∞∑

n=t+1

(
ξn
ξt

)
̟n−(s+1)

(∫ An

An−1

ΠI
j,ndj

)
(1 − κ)

]

Using the definition of Φ, and noting that
∫ As
As−1

πIj,tdj =
(
As
At

)1+χ (
1 − e−(1+χ)us

)
along

with the definition of θb in equation (60) leads to (39).
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Proof of Lemma 3. Equation (44) implies that

ais+1−ais = log cis+1,s+1−log cis,s+
1

γ
log
(
C

(1−ψ)(1−γ)
s+1 β−(s+1)ξs+1

)
− 1

γ
log
(
C(1−ψ)(1−γ)
s β−sξs

)
. (71)

Using (54) inside (71) along with Cs = Ys and simplifying give

ais+1 − ais = log cis+1,s+1 − log cis,s − log

(
Cs+1

Cs

)
− log

[
1

1 − λ
υ(us+1; θ

e, θw, θb)

]
.

Using the definitions of as and zs along with (56), (61), noting that Cs = Ys, and simplifying gives

as+1 − as = − log

[
1

1 − λ
υ(us+1; θ

e, θw, θb)

]
+ zs+1 − zs. (72)

Iterating (72) forward leads to (47).

B Labor input as a composite service and human cap-

ital depreciation

This section provides a more elaborate model of the labor market, that reproduces the

path of labor income over an agent’s life, as postulated in equations (11) and (12). The

main difference between the baseline model, and the model of this section, is that the labor

income process results from general equilibrium wage effects, rather than assumptions on

agents’ endowments of labor efficiency units.

To draw this distinction, we assume that workers’ efficiency units are only affected by

aging and experience. Specifically, workers endowments of labor efficiency units evolve de-

terministically over their life according to ht,s = h (1 + δ)t−s . However, the innovation shocks

ut no longer have any effects on agents’ endowment of labor efficiency units.

Assume moreover, that labor is not a homogenous service. Instead, the units of labor

that enter the production function of final goods and intermediate goods are measured in

terms of a composite service, which is a constant elasticity of substitution (CES) aggregator

of the labor efficiency units provided by workers belonging to different cohorts. Specifically,

one unit of (composite) labor is given by

Lt =

(
t∑

s=−∞

v
1
b

t,s (lt,s)
b−1
b

) b
b−1

, (73)
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where lt,s denotes the labor input of cohort s at time t, vt,s > 0 controls the relative im-

portance of this input and b > 0 is the elasticity of substitution. The production function

of final goods continues to be given by (3) and it still takes one unit of the composite la-

bor service to produce one unit of the intermediate good. Equation (73) captures the idea

that different cohorts have different skills and hence they are imperfect substitutes in the

production process. Next, we let

v
1
b
t,s ≡ (1 − φ)(

b−1
b ) qt,sh

1
b
t,s. (74)

Before proceeding, we note that using (74) inside (73), recognizing that in equilibrium lt,s =

ht,s, and noting that
∑t

s=−∞ qt,sht,s = 1 implies that the aggregate supply of (composite)

labor efficiency units is constant and equal to (1 − φ) .

Since labor inputs by agents belonging to different cohorts are imperfect substitutes, we

need to solve for the equilibrium wage wt,s of each separate cohort. This process is greatly

facilitated by first constructing a “wage index”, i.e. taking a set of cohort-specific wages as

given, and then minimizing (over cohort labor inputs) the cost of obtaining a single unit of

the composite labor input. As is well established in the literature, this wage index for CES

production functions is given by

wt =

(
t∑

s=−∞

vt,s (wt,s)
1−b

) 1
1−b

.

With this wage index at hand, the cohort specific input demands for a firm demanding

a total of Lt units of the composite good are given by

wt,s = wtv
1
b

t,s

(
lt,s
Lt

)− 1
b

. (75)

It is now straightforward to verify that an equilibrium in such an extended model can be

determined by setting wt = wt (where wt is given by [24]) and then obtaining the cohort-

specific wages by setting lt,s = ht,s, and Lt = (1 − φ) in equation (75) and solving for wt,s.

To see this, note that by making these substitutions and using (74) inside (75) leads to the

per-worker income process

wt,sht,s
(1 − φ)

= wtqt,s , (76)
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which coincides with the labor income process in the baseline model. Furthermore by setting

wt = wt, the market for total (composite) labor units clears by construction, whereas the

cohort specific wages implied by (76) clear all cohort specific labor markets, since they satisfy

equation (75) for all markets.

C Data Description

The CEX data are from the NBER website as compiled by Ed Harris and John Sabelhaus.

See http://www.nber.org/ces cbo/Cexfam.pdf for a detailed description of the data. In

short, the data set compiles the results from the four consecutive quarterly interviews in the

CEX into one observation for each household. We follow a large literature (see e.g. Vissing-

Jogensen (2002)) and drop from the sample households with incomplete income responses,

households who haven’t completed one of the quarterly interviews, and households that

reside in student housing. To ensure that data selection does not unduly affect the results,

we also ran all the regressions on the raw data including dummies for reporting status and

the number of completed interview quarters. The results were not affected in any essential

way.

A more delicate issue concerns the definition of consumption. As Fernandez-Villaverde

and Krueger (2007), we used a comprehensive measure of consumption that potentially in-

cludes durables. Specifically, we used exactly the same definition as Harris and Sabelhaus.

Our choice is motivated by our model; according to the model, cohort effects are determined

by the intertemporal budget constraint of agents born at different times. Accordingly, as

Fernandez-Villaverde and Krueger (2007), we use total consumption expenditure in the es-

timation of cohort effects. To test if this choice materially affects our results, we also ran

the results using non-durable consumption (total consumption expenditure excluding med-

ical and educational expenses, housing, furniture and automotive related expenses). Using

non-durable consumption the volatility of cohort effects was larger; however, there was not

a big difference between the variance of the permanent components of the cohort effects, no
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matter which concept of consumption (total or only non-durable) we used.
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