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Abstract

Scientific freedom and openness are hallmarks of academia: relative to
their counterparts in industry, academics maintain discretion over their
research agenda and allow others to build on their discoveries. This pa-
per examines the relationship between openness and freedom, building
on recent models emphasizing that, from an economic perspective, free-
dom is the granting of control rights to researchers. Within this frame-
work, openness of upstream research does not simply encourage higher
levels of downstream exploitation. It also raises the incentives for ad-
ditional upstream research by encouraging the establishment of entirely
new research directions. In other words, within academia, restrictions on
scientific openness (such as those created by formal intellectual property
(IP)) may limit the diversity and experimentation of basic research itself.
We test this hypothesis by examining a “natural experiment” in openness
within the academic community: NIH agreements during the late 1990s
that circumscribed IP restrictions for academics regarding certain geneti-
cally engineered mice. Using a sample of engineered mice that are linked
to specific scientific papers (some affected by the NIH agreements and
some not), we implement a differences-in-differences estimator to evalu-
ate how the level and type of follow-on research using these mice changes
after the NIH-induced increase in openness. We find a significant increase
in the level of follow-on research. Moreover, this increase is driven by
a substantial increase in the rate of exploration of more diverse research
paths. Overall, our findings highlight a neglected cost of IP: reductions
in the diversity of experimentation that follows from a single idea.
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1 Introduction

The past three decades have seen a significant increase in the scope of formal
intellectual property (IP) rights, such as patents, over knowledge traditionally
maintained in the public domain (Mowery, et al 2001; Heller 2008). For exam-
ple, American universities are granted over 3,000 U.S. patents each year and
maintain a portfolio of over 40,000 patents (see Owen-Smith & Powell, 2003).
This dramatic expansion in IP rights over the earliest stages of research has
caused widespread debate about the effectiveness of incentives for innovation
(Scotchmer 1991, 1996). This debate is grounded in the notion that innova-
tion is a step-by-step process in which discoveries generated in one stage serve
as essential inputs into the next. The implications of expanding IP rights in
the earliest stages of the innovation process are mixed. On the one hand, early-
stage IP may be important to encourage the establishment of new research lines,
since upstream researchers can thereby avoid expropriation by downstream re-
searchers (Scotchmer, 1996). On the other hand, by requiring downstream
innovators to contend with a large number of fragmented upstream IP rights,
their projects may suffer from ”gridlock” as a result of transaction costs and
complexity (Heller & Eisenberg 1998; Heller 2008).

By highlighting a single step-by-step research line the current debate ab-
stracts away from two fundamental features of knowledge. First, a single up-
stream idea can, in principle, be applied across multiple later-stage domains and
applications (Breshnahan & Trajtenberg 1995, Rosenberg & Trajtenberg 2001).
In other words, ideas are non-rivalrous. Second, it may be extremely difficult
in advance to precisely articulate the diversity and range of applications arising
from a given upstream idea (Rosenberg 1996). Different individuals may have
different perceptions regarding the main application of an idea or the follow-on
research projects they would prefer to pursue. In other words, rather than fo-
cusing exclusively on the value generated along a single line, we argue that it is
important to recognize that multiple researchers may seek to pursue a diverse
range of exploratory ”horizontal ” follow-on experiments each of which may
itself initiate new (potentially unanticipated) research lines.

What then is the role played by upstream IP rights when follow-on research
includes both horizontal exploration as well as vertical exploitation? Inter-
estingly, while prior research highlights the potential for gridlock arising from
an upstream patent ”thicket,” little attention has been paid to the interaction
between the openness of scientific knowledge and the diversity of scientific exper-
imentation across a range of research lines. In this paper we examine the impact
of changes in openness on the level and nature of scientific work in a setting in
which diversity of scientific experimentation is particularly salient - academic
research. Our analysis builds on recent research exploring the distinctive in-
centives and control rights provided by the institutional regime for research in
academia as compared to industry (David and Dasgupta 1994, David 2001ab,
David 2003).

More specifically, we take as a starting point, the multi-stage research model
developed by Aghion, Dewatripont & Stein (2007) who emphasize the role of

2



freedom for researchers – defined as the granting of control rights allowing re-
searchers to select their research direction. Then we analyze the role of open-
ness in that framework. In this setting, openness not only impacts innovation
incentives within a given research line but also encourages exploration and in-
vestment in new and speculative research directions. We identify three main
channels whereby openness can influence the level and nature of scientific re-
search. First, by reducing the costs of accessing key research inputs, openness
encourages new researchers to enter, thus increasing the diversity of academic
research participants1. Second, openness makes researchers with high levels of
freedom (academics) more likely to engage in experiments that broaden the hor-
izontal diversity of research lines, in part because subsequent openness implies
that their research can itself have subsequent impact across a wide range of re-
search lines. Finally, there is the expropriation effect whereby an increase in the
level of openness of an upstream research reduces the costs associated with the
exploitation of that tool in research along a given vertical research line. Overall,
our theoretical discussion suggests that, particularly in research settings char-
acterized by high levels of freedom, openness not only increases the overall flow
of research output, it should also be closely associated with the establishment
and exploration of entirely new research lines. Moreover, while openness should
affect both basic and applied research, the impact on basic research will, we pre-
dict, dominate when researchers in the pre-openness period face high fixed costs
of initiating a new line of research. In contrast, the increase in applied research
will dominate when significant basic research has already been conducted.

We evaluate these empirical implications by taking advantage of a ”natural
experiment” in openness that occurred in the late 1990s in the field of mouse ge-
netics. The experiment resulted from two Memoranda of Understanding (MoU)
between DuPont and the National Institutes of Health (NIH) regarding the abil-
ity of academic researchers to gain access to hundreds of genetically engineered
mice developed using two types of technology (Cre-Lox and Onco, respectively)
each covered by patents owned or licensed by DuPont. Prior to the NIH-MoUs,
DuPont had adopted stringent restrictions on use of the mice for academic re-
search. However, the MoUs lifted these restrictions by implementing a simple
contract, providing a royalty-free and costless license that specifically removed
any claims to reach-through rights on downstream research, and ensuring that
the mice covered under the patents would be made available through the Jackson
Laboratory (the world’s single largest non-profit repository for research mice).
The NIH-MoUs constitute an openness shock for the mouse genetics research
community: Prior to the MoUs research tools covered by the patents - hundreds
of varieties of Cre-lox or Onco mice developed in the early 1990s - were subject
to stringent restrictions in openness. After the MoUs they suddenly became
widely accessible to the entire academic research community.

Our empirical approach takes advantage of key aspects of this natural ex-
1Note that in our analysis we do not deal with the complementary issue of how to finance

and/or reward the discovery of the initial research input. This could happen either through
publicly subsidized research or through public buy-outs of (private) patents as in Kremer
(1998).
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periment to develop and implement a differences-in-differences estimate of the
impact of the NIH-MoU openness experiment on both the level and nature of
follow-on research. First, each genetically engineered mouse is associated with a
journal article that describes its initial development; as such, we are able to con-
struct samples based on ”mouse-articles” that were affected or unaffected by the
NIH agreements. Second, both the timing and the scope of the NIH-MoU were
effectively unanticipated by the mouse genetics community. As a result, there
was an unexpected and dramatic shift in the level of openness in a short period
of time. Finally, we are able to take advantage of detailed bibliometric data for
articles citing the mouse-articles in either the treatment or control groups to
characterize how the openness shock changed the nature of subsequent research
(relative to the evolution of citations within the control group).

To implement this empirical approach, we analyze the citations to a sample
of more than 2000 mouse-articles, approximately 10% of which described Cre-
lox and Onco mice that experienced a shift in the level of openness as the result
of the NIH agreements. By comparing citations to the mouse-articles before and
after the agreement (and comparing them to the evolution of citations in the
control sample), we are able to isolate the causal impact of a shift in scientific
openness on the level and nature of follow-on research. In particular, rather
than simply examine whether there is a net increase or decrease in the level of
citations, the bulk of our analysis examines how the nature of citations differs
after the openness shock. Specifically, we construct measures capturing whether
there is a shift in the size of the research community using a particular mouse
(i.e. the number of new authors citing the mouse-article), whether research is
associated with the establishment of new research lines that had not previously
used a particular mouse (i.e. whether the citations include keywords that had
never been linked to particular mouse-mouse), and whether the research is basic
and ”upstream” or applied and ”downstream” in nature (as captured by the
journals in which the citations are published). Thus we develop three distinctive
empirical tests that map to the three core claims of our theoretical framework.

Our results can be summarized as follows. First, the NIH agreements result
in a significant increase in the level of follow-on research. More importantly,
the bulk of the new citations arise from articles published by “new” researchers
or institutions. In other words, most of the incremental citations to a given
mouse-article come from researchers working at institutions that had not cited
that mouse-article prior to the NIH agreement. Next, our results offer direct ev-
idence that increased scientific openness is associated with the establishment of
entirely new research lines. Specifically, the openness shocks lead to a significant
increase in the diversity of the journals in which mouse-articles in the treatment
group are cited, and, perhaps even more strikingly, a very significant increase in
the number of previously unused “keywords” describing the underlying research
contributions of the citing articles. Finally, Cre-Lox and Onco mice differed in
terms of whether researchers had any access prior to the agreement (but faced
some threat of IP enforcement) thus leading to differences in the likely impact
of the NIH agreements. While the mice covered by the Onco agreement were
available, researchers were responsible for separately signing licenses as they
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moved to downstream applications. Mice based on the Cre-Lox technology
were much more limited in their distribution. Reflecting these differences (and
our theoretical predictions), mouse-articles associated with the Cre-Lox agree-
ment experience a significant increase in citations by basic research journals,
while mouse-articles associated with the Onco agreement realize a citation in-
crease in applied research journals. Taken together, this evidence is consistent
with the view that the NIH agreement facilitated access to research inputs. As
a result, in academic settings where control rights over research direction are in
the hands of researchers, increased openness has at least as large an effect on
enhancing the scope and diversity of horizontal exploration as it does on induc-
ing vertical exploitation along well-defined research lines. This suggests that
current debates over the relationship between IP and innovation should consider
the impact of single IP rights over critical early-stage research tools as seriously
as they have explored the implications of upstream IP thickets. Secondly, it
suggests that our view of step-by-step innovation is strongly enhanced when we
consider the multiplicity of both horizontal and vertical research lines.

The paper is organized as follows. Section 2 presents our theoretical frame-
work and develops it main predictions concerning the effects of increased open-
ness on the horizontal and vertical flow of research. Section 3 describes the
experiment and the identification strategy. Section 4 presents the data and
summary statistics. Section 5 presents the empirical results, and Section 6 con-
cludes.

2 Openness in scientific knowledge production

We broadly define openness as any event or device that increases a researcher’s
ability to access the ideas or materials of other researchers. Alternatively, it
allows researchers to provide access to her own ideas and share them as she sees
fit. We shall argue that increased openness has three main effects on basic re-
search. First, as noted in the introduction, openness tends to favor more applied
research, possibly at the expense of more basic research, as it reduces the ex-
tent to which upstream researchers can appropriate the returns from their own
research. Second, openness makes it easier for stage-i researchers to ”sell” their
ideas to stage-i + 1 researchers, which in turn encourages them to undertake
stage i. (Suggested rewording: Second, openness makes more likely that stage-
i+ 1 researchers will know about, and therefore build upon, the ideas of stage-i
researchers, and this increases the ex-ante incentive to undertake stage i.) Third,
openness fosters more basic research and the creation of new lines, in particu-
lar by reducing researchers’ cost of accessing other researchers’ ideas, thereby
making it more likely that the alternative strategies pursued by researchers with
high levels of freedom will actually lead to new lines (do we think of this as an
externality?). We now discuss these various effects of openness, first abstract-
ing from control rights considerations and focusing on the effects of openness on
basic and applied research on a given line, then emphasizing the complementar-
ity between openness and freedom and the resulting effect of openness on the
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diversity of lines.

2.1 Openness down a particular research line

Consider a two-stage research line. Each stage requires one researcher. Success
at each stage, occurs with probability p, and moves research up to the next stage.
Then, as long as we focus on a single research line, a first effect of openness is
that increases the extent to which stage 2 can extract rents from stage 1. Thus,
if V denotes the ex post value of the line (e.g the price at which the research
can be commercialized), then the value Π2 of the line as of stage 2, is equal to

Π2 = pV + ψ − w,

where ψ is the additional rent openness gives stage 2 at the expense of stage 1,
and w is the wage paid to a researcher (we take it as given for simplicity). The
stage-1 value of the line can then be expressed as:

Π1 = p(pV − ψ − w)− w = p2V − pψ − (1 + p)w.

Thus, trivially, increasing ψ fosters stage-2 research at the expense of stage
1 research since it raises Π2 and reduces Π1.

Assume now that openness has an additional effect, by also increasing the
possibility for the stage-1 researcher to transmit her research to stage 2 re-
searcher(s). Indeed, once success has been obtained in stage 1, it may not be
immediate to identify a researcher who will be able to carry the project forward
into stage 2. This may require a ’successful match’, whose probability will nat-
urally rise with openness. Specifically, we call the probability of such a match
A and we assume it depends positively on ψ. This means the stage-1 value of
the line becomes:

Π1 = pA(ψ)(pV − ψ − w)− w = A(ψ)(p2V − pψ)− (1 + p)w.

In turn, this implies:

dΠ1

dψ
= A′(ψ)(p2V − pψ)− pA(ψ),

which can be positive in particular if the effect of openness on the quality of
matching is high (i.e. if A′(ψ) is high). (Brief discussion of welfare implications
.)Further, if we assume that research is socially optimal (i.e. if p(pV −w)−w >
0), then a sufficient condition for openness to improve social welfare is that
fracdΠ1dψ > 0.

To sum up, openness should be expected to foster downstream research
thanks to higher appropriability. As for upstream research, the adverse effect
of downstream appropriablility can at times be outweighed by a probability of
finding a good match interested in pursuing the research agenda.
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2.2 Openness and diversification

In this subsection we enrich the above framework by introducing the notion of
academic freedom, drawing on Aghion, Dewatripont and Stein (2008), hence-
forth ADS. We then analyze the interplay between freedom and openness, and
in particular we argue that to the extent that early research stages are optimally
managed under academic freedom, openness in early stages of research should
foster the creation of new research lines.

2.2.1 Introducing academic freedom: ADS

We keep assuming that research proceeds along multi-stage lines, with each
line starting with an initial idea I0, and eventually generating a marketable
product with value V after k ≥ 2 successful stages. As before, we assume
that it is sufficient to hire one researcher per stage, and that this researcher
obtains a probability of success equal to p < 1 at any stage if he follows the
success-maximizing (“practical”) research strategy at that stage. But now we
also assume that, instead of the practical strategy, a researcher is free to follow
an “alternative” strategy. If we assume that the scientist has a zero individual
probability of success following this approach, then this alternative strategy
amounts to the scientist working on an activity that he enjoys more but that
does not pay off in monetary terms. However, as we describe at the end of
this section, we can interpret this alternative strategy as the case in which the
scientist works on an activity that may help initiate new lines but does not
generate progress on that particular line.

There is an infinite supply of researchers at each stage, each of whom has
an outside option w. After being hired at stage j, the scientist is exposed
to idea Ij−1, and then learns whether he would prefer following the practical
strategy or the alternative strategy. If he is able to undertake his favored
strategy, he suffers no disutility from working. If, however, the scientist has to
undertake the strategy that he likes less, he suffers disutility of z. The ex ante
probability that a scientist prefers to follow the practical strategy is given by
α. Assume further that the choice of the practical vs. alternative strategy is
ex ante non-contractible.2

Academic research (or freedom) differs from private-sector research in that
it leaves control rights over the research strategy in the hands of the researcher.
Thus if a research line is pursued in academia, the researcher is paid wage w
and always works on his preferred strategy. This implies that with probability
α, the scientist works on the practical strategy, and with probability (1−α), he
works on the alternative strategy. Thus the ex ante probability of advancing to
the next stage is given by αp. Now consider a researcher employed by the private
sector. Whether the researcher prefers the practical or the alternative strategy,

2In other words, one cannot write a contract that promises a scientist a bonus for following
the practical strategy, because the nature of what kind of work that strategy entails cannot
be adequately described ahead of time.
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becomes evident once the researcher has been hired by the firm and has been
given access to the idea by the firm owner. Yet ex post, the firm owner has the
authority to force the scientist to work on the practical strategy. Anticipating
this, the researcher will demand a wage of wp = w + (1− α)z in order to work
in the private sector. The (1− α)z markup over the academic wage represents
compensation for loss of creative freedom–the fact that scientists now always
have to adopt the practical strategy, whether this turns out to coincide with
their preferences or not.

2.2.2 When is freedom optimal?

A main finding in ADS is that academic freedom tends to dominate private
sector focus at earlier stages on a research line. To see this, take a research line
involving 2 stages, and suppose that the first stage has been successful, so that
we are now at stage 2, with one more stage to be completed in order to generate
a payoff of V . If this last stage of research is done in the private sector, the
expected payoff is equal to E(πp

2) = pV −wp. If instead the last stage is done in
academia, the expected payoff is equal to E(πa

2) = αpV − w. This means that
private sector research will yield a higher payoff than free (academic) research
and only if (1− α)pV > (wp − w), or equivalently pV > z.

Now, let Π2 denote the maximum of E(πp
2) and E(πa

2). Moving back to
stage 1, we now compare between E(πp

1) = pΠ2 − wp and E(πa
1) = αpΠ2 − w.

Private sector research will yield a higher payoff than free (academic) research
at stage 1 if and only if pΠ2 > z.

Since Π2 < V , it follows that private sector research is value-maximizing
at stage 1, it is also value-maximizing at stage 2. In particular it cannot be
value maximizing to have academic freedom operate at later stages than private
sector research. The key result is therefore that academic freedom will be the
optimal governance structure at earlier stages and private sector research will
be optimal at later stages. The intuition is that while academia’s wage cost
advantage stays constant over research stages, its lower probability of success
becomes more problematic as one approaches the final value V .

This result can be generalized to lines of any length k : if Πi denotes the
NPVs of the line of length k as of stage i, we have:

Πi = max{E(πp
i ) = pΠi+1 − wp, E(πa

i ) = αpΠi+1 − w} < Πi+1.

This monotonicity property, together with the fact that research should be pur-
sued under academic freedom if and only if pΠi+1 > z, yields the desired result.

2.2.3 The value of experimentation

Note that the model so far provides a rationale for free (academic) research
even in the extreme case where the alternative strategy has no value beyond
saving the researcher the disutility of pursuing the practical strategy. In reality
however there is value in experimenting with ideas that may lead to an entirely
new research lines, consistently with the idea that scientific discoveries do not
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follow a purely “linear” model. This does not alter the relative optimality of
academia (vs. private research) in earlier (vs. later) stages of research. It
does, however, raise the desirability of freedom in general (and academia as
the institutional regime that supports such freedom), if we make the realistic
assumption that pursuing the alternative strategy confers a higher probability
of generating entirely new research lines than pursuing the practical strategy
(note that, realistically, the probability of such an event, possibly the result of
an “accidental” discovery, is nonzero for both strategies)3.

2.2.4 Complementarity between openness and freedom: diversifica-
tion effects

That more openness should foster the creation of new lines, follows from the
fact that openness favors the cross-fertilization of ideas within stages. More
formally, consider two parallel research lines, 1 and 2, each of which operates
as described above. Namely, with ex ante probability α the researcher initially
allocated to the current stage of either of these two lines, prefers to pursue the
practical strategy for that line whereas with probability (1 − α) he prefers not
to pursue this practical strategy. Now openness implies that the scientist on
line 1 can learn about project 2 and vice-versa, and that consequently with
positive probability ϕ, thanks to academic freedom and the resulting horizontal
interaction, she may choose to work on the practical strategy for project 2 if
nobody else does. A greater degree of openness implies a higher value of ϕ.

Openness also increases the net present value of a research line operated
under academic freedom in a given stage i, from:

αpΠi − w

to:
[α+ (1− α)ϕ]pΠi − w.

Thus openness increased the social value of operating any stage (particularly
earlier stages) under academic freedom.

The idea that openness favors cross-fertilization also implies that it should
widen the pool of researchers and research institutions working on a partic-
ular research idea, since one key feature of academia is the fact that diverse
researchers experiment with scientific ideas to investigate their full potential.
What openness does is to reduce the fixed cost of ’entering’ a particular re-
search area to conduct these investigations.

Remark 1: An additional reason (see ADS), for why increased openness
should foster free research and therefore the creation of new lines, is that one
particular feature of academic institutions which help them enforce the commit-
ment not to monitor individual scientists’ research agenda, is that they typically
are non-profit institutions. This in turn makes them less willing or less able to
incur the cost of monitoring researchers. But that same feature also implies

3See ADS for details.
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that a reduction in the cost of accessing research inputs, should make a bigger
difference for academic research than for private sector research.

Remark 2: If openness enhances basic research and the creation of new lines,
this implies that it should have a long-lasting effect on the flow of subsequent
publications. This is because new lines take a significant amount of time before
maturing, and their development could lead to even more research lines being
created. Indeed, starting a new line means a positive probability of a long
dynamic flow of new discoveries whose research lines continue long after the
original line has ended..

2.3 Testable predictions

Beyond the prediction that increasing the openness of critical early-stage re-
search inputs should globally enhance the total flow of knowledge4, and the
prediction that the causal impact of a shift to greater openness should be to
generate more research over the long-run (not simply a short-run boost)5, the
most important predictions from our model relate to the types of research and
researchers most likely to be impacted by an “openness shock” in a world where
researchers have control rights on their research activities.6Three predictions
stand out. First, an openness shock should increase the diversity of researchers
engaged in follow-on innovation. With more open and independent access to
innovation inputs, new researchers can overcome fixed cost barriers to move
from other fields and build on these inputs. Second, an openness shock should
increase the diversity in the types of research that are being pursued, as it fos-
ters horizontal experimentation, therefore leading to the creation of new lines.
Third, openness should have a different impact on basic or applied research. In
particular when controls rights conditions are the first order consideration of
the openness shift, then we would anticipate that the vertical exploitation out-
come would dominate. However, when access costs are initially high or when
control rights considerations are not first order, then we would expect the boost
in openness to affect basic research with horizontal exploration dominating.

4This prediction is somewhat obvious and accords for example with a recent study estimat-
ing the significant and positive impact of Biological Resource Centers that make key research
materials widely available to researchers (Furman & Stern 2008).

5In other words, because the shift to greater openness is an enduring condition of key
innovation inputs (under our model) and such inputs can be valuable to follow-on researchers
over a long period - generating not one but multiple research lines - we would expect to see a
long-run move to greater follow-on research, not simply a one time shock.

6In our particular empirical setting, the openness shock is focused directly and exclusively
on academic (public-sector) researchers. We therefore do not make specific predictions re-
garding the overall balance of innovation between the public and the private sector.
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3 Empirical setting: experiments in the open-
ness of genetically engineered mice

The remainder of this paper tests these ideas by taking advantage of two ”natu-
ral experiments” that significantly shifted the level of openness associated with
two broad categories of genetically engineered mice, both crucial inputs into
cumulative research in the modern life sciences. 7 To understand how we take
advantage of these shifts in openness, it is useful to consider the essential role
played by specialized research mice in modern life sciences research. With their
genetic likeness to humans (the mouse and human genomes have a 99% similar-
ity), mice play a central role in the study of cancer and other human diseases
(Boguski, 2002). Throughout the twentieth century, scientists in mouse ge-
netics relied on “spontaneous mutations” for their disease studies: researchers
bred mice that naturally exhibited particular disease-linked symptoms or be-
haviors. 8 To facilitate their efforts, the research community developed open
access institutions, notably the Jackson Laboratory (a mouse repository in Bar
Harbor, Maine) to classify, breed, and distribute specialized research mice to
the academic community (referred to as ”JAX” mice) (Rader 2004). In the
early 1980s, advances in molecular biology and the ability to manipulate em-
bryonic stem cells (Evans et al. 1984) allowed researchers to develop a set of
systematic and precise methodologies for engineering specialized mice as re-
search tools, greatly expanding the application of research mice in life sciences
research (Ruddle et al. 1980, Brinster et al. 1981, Constantini & Lacy 1981,
Wagner et al. 1981ab).9 Three breakthroughs were particularly important.
First, in a discovery awarded the 2007 Nobel Prize in Medicine, Mario Capecchi
of the University of Utah and his collaborators developed ”knock-out” technol-
ogy, enabling researchers to delete specific genes in research mice (Doetschman
et al. 1987; Thomas & Capecchi 1987). Second, with partial funding from
DuPont Corporation, Professor Phillip Leder at Harvard University developed
Oncomouse methods, which provided a means for inserting (rather than delet-
ing) genes into an embryo, thereby making mice susceptible to particular forms
of cancer and other diseases (Stewart et al. 1984). Finally, researchers in the
life sciences division of DuPont Corporation developed the Cre-Lox technology
- a precise ”cutting and pasting” tool that turns off genes in specific tissue or
organs (Sauer et al. 1987).

7This section draws on Murray (2009) which offers an analytical narrative history of the
role of intellectual property and openness in the mouse genetics community.

8Given the value of such mutations, researchers also developed techniques to significantly
increase the rate of mutation of research mice such as the exposing pregnant mice to high
levels of radiation (Green & Roderick, 1966).

9The use of these methods for mouse engineering are complex and costly. To create a mouse
with particular genes inserted within a mouse genome, scientists must first inject foreign DNA
into mouse eggs, transplant the eggs into female mice, and, if successful, monitor and breed
the incorporation of the genes into the offspring . During our sample period, the development
of a ”mouse line” from scratch likely involved at least 18 months of laboratory research and a
significant investment of time and attention by a principal investigator (Rader 2004, Murray,
2009).
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By offering general-purpose tools to engineer discrete changes in the genetic
profile of research mice, each of these three methods contributed to a paradigm
shift in life sciences research. These tools gave scientists a means to investigate
a wide variety of new research problems, from very basic research on the impact
of genetic variation on disease incidence to the development and optimization of
new therapies.10 In practical terms they allowed researchers to develop three
different types of research mice: Knock-out, Cre-lox and Onco mice and to use
these mice as critical research inputs in their experiments in addition to the
more traditional spontaneous mice.

The revolution in mouse genetics occurred alongside several important shifts
in the role of formal IP in life sciences research. In 1980, the Supreme Court
decision in Diamond v Chakrabarty established the patentability of genetically
engineered organisms and the Bayh-Dole Act affirmatively allowed universities
to seek patent protection and licensing revenues from Federally-funded research
(Mowery et al 2004).11 By the mid-1990s, US universities receiving over 3,000
patents each year. While many observers took this as an indicator of universi-
ties’ evolving role as engines of innovation and commercialization (Henderson,
Jaffe & Trajtenberg 1998), some argued that strong IP rights over scientific
research discoveries were detrimental to research productivity and cumulative
discovery (Heller & Eisenberg 1998). In particular, some universities placed
significant restrictions on the distribution of patented research materials to aca-
demic researchers (e.g., the University of Wisconsin restricted the open dis-
tribution and use of patented stem cell lines (see Murray 2007)) while other
universities were accused of rent-seeking when they sought to enforce IP claims
over independent commercial discoveries (e.g. the University of Rochester’s
enforcement of its patents on the Cox-2 pathway (Shane & Somaya 2007).

Debates over the role of patents on scientific research tools were particularly
salient for researchers exploiting the transformation in mouse genetics. All
three of the key mouse engineering tools and the mice generated with them –
Knock-out mice, Oncomice and Cre-Lox mice – were covered under relatively
broad patents.12 In the case of Knock-out mice, the University of Utah re-
ceived a patent in 1987 but never sought to enforce the patent against follow-on
researchers using the knock-out methodology. Instead, Knock-out mice were
made available at (essentially) marginal cost through the Jackson Laboratory
(i.e., these mice were distributed as JAX mice). The patents over the Onco and

10The 2007 Nobel Prize announcement regarding knock-out mice states that ”Almost ev-
ery aspect of mammalian physiology can be studied by gene targeting. We have conse-
quently witnessed an explosion of research activities applying the technology. Gene tar-
geting has now been used by so many research groups and in so many contexts that
it is impossible to make a brief summary of the results.” (Nobel Prize Press Release
http://nobelprize.org/nobel prizes/medicine/laureates/2007/press.html).

11These legal and policy shifts reflected, in part, increasing appreciation that certain types
of academic research were increasingly dual in nature: fundamental scientific discoveries that
could simultaneously have a high degree of commercial utility (Stokes 1987; Murray & Stern
2007)

12Knock-out mice were covered under U.S. Patent 4,687737, Oncomice under U.S. Patent
4,736,866 and Cre-lox mice under U.S. Patent 4959317.
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Cre-Lox technologies proved to be much more controversial. As a result of their
partial funding of Harvard’s Oncomouse discoveries and their internal develop-
ment of Cre-Lox technology, DuPont gained exclusive control over patents for
these two technologies. In contrast to the University of Utah, DuPont exercised
strict control over the distribution and use of mice that exploited the techniques
covered by their patent portfolio. During the early 1990s, researchers (and their
institutions) who wanted ”freedom to operate” were obliged to obtain a license
from DuPont when they sought to receive and use an Onco or Cre-Lox mouse.
The detailed licensing agreement required annual disclosure to DuPont regard-
ing experimental progress, limits on informal mouse exchange among academic
researchers, and ”reach through” rights allowing DuPont to automatically re-
ceive licensing revenue from any commercial applications developed using either
Cre-Lox or Onco technology.

These limits to openness caused widespread discontent among the academic
community. Academic researchers objected to the exercise of patent rights by
a for-profit company as a significant limitation on the norms of openness among
academics, and claimed that the lack of access to these mice significantly re-
duced their freedom to pursue their own research agendas (Murray, 2009). 13

Individual researchers engaged in various forms of protest – from attempt to
initiate patent invalidation proceedings (which went nowhere) to informal shar-
ing of mice (against the advice of their universities). As well, there were more
systematic attempts to subvert or blunt the impact of the DuPont licensing
regime: notably, in 1992 Dr. Ken Paigan, then director of JAX, announced he
would make Onco-mice openly available without a license, directly contravening
DuPont’s IP rights.14 While some researchers took advantage of informal shar-
ing or access of Onco-mice from the JAX (opening themselves to a potential
infringement suit by DuPont), most researchers (and their institutions) were
wary of the legal repercussions that could arise from using these mice, particu-
larly for more applied research. Notably, through 1998, there was no access to
Cre-Lox mice through an open-access depository such as JAX.

Thus, by the late 1990s, researchers seeking to use a particular specialized
research mouse faced one of several access regimes. First, the most appropri-
ate mouse for a particular research project might be a spontaneous mouse or
a Knock-out mouse, and would (in general) be available on an open-access ba-
sis (from JAX or another provider) at marginal cost.15 Second, if the research
required an Oncomouse, the mouse might be available informally through the
peer-to-peer network or through JAX, but to use such a mouse (particularly for

13As cited in Murray 2009, DuPont’s practices were seen as “an enormous obstacle to
free and open distribution of information and materials. . . .it was a whole new way of doing
science. . . it really affected the way the mouse research community works” (Rajewsky quoted
in Jaffe 2004).

14Paigan Quote
15In addition to the unenforced Utah patent on knock-out technology, a small number of

additional patents were granted over specialized knock-out mice. However, the intellectual
property restrictions associated with these mice seems to have been negligible, and, in any
case, their openness was not directly influenced by the NIH agreements that we exploit in our
empirical work.
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an applied project) was in direct contravention of DuPont’s licensing require-
ments; it was also possible, in principle, to sign the DuPont licensing agreement,
though very few institutions or researchers signed an actual agreement prior to
1999. Third, if a Cre-lox mouse was preferred, it might be available, but only
through informal exchanges among colleagues. These informal exchanges were
themselves beset by high transaction costs: Cre-lox developers invested consid-
erable time and resources in its development and often required coauthorship (or
other type of non-monetary payment) in exchange for access to their mice, and
the exchange of such mice took place in the shadow of potential infringement
suits (which meant contravening the official policy rules of most universities)
(Murray 2009). Finally, it was also feasible (at least in principle) to develop
a new mouse as part of the research process, a process which could delay a
project by at least 18 months and require significant resources and the devel-
opment of specialized skills (and which could still be infringing on the DuPont
patent portfolio).

The degree of openness associated with both Cre-Lox and Onco mice mice
shifted dramatically in 1998 and 1999, respectively. In response to consider-
able pressure from the academic community throughout the 1990s, the National
Institutes of Health (NIH), with the direct involvement of NIH Director and No-
bel Laureate Harold Varmus, successfully negotiated two Memorandum of Un-
derstanding (MoU) among DuPont, the Jackson Laboratories (JAX), and the
NIH. Together, they greatly increased the openness of genetically engineered
mice for academic researchers. The Cre-Lox MoU, announced in July 1998,
allowed JAX or universities to distribute and share Cre-lox mice with a simple
license (essentially a standardized one-page material transfer agreement and an
institution-wide license). In addition, JAX announced its commitment to ac-
quire, breed, and distribute Cre-Lox mice on an open-access basis. A similar
agreement for the Oncomouse was reached one year later (in July 1999), though
the impact of this agreement was somewhat less dramatic as JAX had already
been distributing Oncomice to researchers prior to the 1999 MoU.

Over a two-year period, life sciences researchers seeking to take advantage
of the revolution in mouse genetics thus experienced a significant shift in their
ability to access and exploit research mice covered under these agreements,
while experiencing no shift in the degree of openness associated with either
Knock-out or Spontaneous mice. These differences provide the key source of
variation that we exploit in our empirical work. Three features are particularly
useful to emphasize. First, while the ”demand” for genetically engineered
mice was increasing over time, there is no evidence that the potential demand
for Onco or Cre-Lox mice was increasing at a faster (or slower) rate than the
demand for Knock-out mice. Each technology represented a general purpose
research tool, with the key distinction being that the Knock-out technology
was made available on an open-access basis throughout the period, while the
Onco and Cre-Lox technology faced significant open-access restrictions until the
time of the NIH agreements. Second, though the academic community lobbied
continuously for increased openness regarding these research tools, the timing
of the agreement as well as its scope (essentially removing the main hurdles
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associated with access) were unanticipated (Marshall 1999). It is unlikely that
researchers delayed projects in anticipation of such a comprehensive agreement;
instead, researchers deterred by the DuPont licensing restrictions undertook
different research projects or devoted themselves to other research directions
(Murray 2009). Third, though the agreements cover two DuPont-controlled
patents, they impacted a large number of different specialized research mice.
In spite of the IP difficulties, by 1998, more than 50 different engineered mice
had been developed and disclosed in the scientific literature using the Cre-Lox
technology, and more than 160 different Oncomice were similarly described. As
we outline in detail below, we can take advantage of the fact that these mice were
developed and disclosed to the scientific literature at different times and that
their follow-on use by other scientists is captured through the citation of these
articles in follow-on scientific articles, to precisely identify the impact of the
NIH openness agreements on the use of genetically engineered mice in follow-on
scientific research.

Taken together, we believe that the openness shock associated with the NIH
agreements accords well with the comparative statics developed in Section II.
Specifically, engineered research mice are general purpose research tools that can
be used in multiple research lines and at multiple research stages. Access re-
strictions on these research tools have the potential to significantly impact both
the horizontal and vertical research incentives and productivity. On the one
hand, DuPont’s patent enforcement strategy is a strong candidate for vertical
impact, as the threat of reach-through rights from DuPont limits the incentives
to pursue more applied research stages. At the same time, the complicated
and costly process of obtaining ”freedom to operate” is also likely to reduce the
degree of horizontal exploration. As predicted by our theory, the restrictions
and transaction costs imposed by DuPont’s enforcement choices would limit
investment in early-stage academic research that depends upon these research
tools but where it is also difficult to anticipate the precise research direction,
requirements or outputs.

4 Empirical strategy

Our theoretical framework suggests that the level and nature of follow-on re-
search depend not only upon the quality and type of research inputs available
but also upon the degree of ”openness” of these research inputs. To test this
idea, we examine the impact of shifts in the openness of some engineered re-
search mice (arising from the NIH agreements) on the level and type of follow-
on research. Building on Furman and Stern (2008), this approach addresses a
fundamental inference problem associated with traditional cross-sectional ap-
proaches to the evaluation of openness (and related institutional arrangements)
on scientific research: If more “open” inputs are used more extensively by
follow-on researchers, does this follow from the fact that they are open or from
the fact that openness tends to be associated with higher-quality inputs and
materials? In the absence of an empirical framework that disentangles selection
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effects (i.e., the correlation between openness and overall research impact) from
the marginal impact of openness per se, we cannot construct the appropriate
counterfactual estimate of the rate of follow-on research in the event that the
same knowledge was available under a different level of openness.

Ideally, causal identification of the impact of openness would rely on a con-
trolled experiment in which different knowledge inputs (such as particular re-
search mice) were randomly allocated to distinct institutional environments with
varying degrees of openness. A practical route towards capturing the essence of
such an approach is to take advantage of natural institutional variations that
shift key research inputs towards higher (or lower) levels of openness in a way
that is exogenous both to their initial production and to their incorporation into
follow-on research lines.

We implement this idea by taking advantage of the institutional changes to
openness negotiated by the NIH that affected some (but not all) specialized
research mice.16 As noted in the introduction, our empirical strategy exploits
several distinctive elements of the system by which scientific research is dis-
closed and cited. First, in most cases, new specialized research mice are dis-
closed through publication in scientific articles that describe their production
and distinctive characteristics (we refer to these disclosures as mouse-articles).
Notably, we are able to identify mouse-articles both for mice affected by the NIH
agreements (i.e., Cre-Lox and Onco mouse-articles) and for mice unaffected by
the NIH agreements (i.e., Knock-Out and spontaneous mouse-articles).17 Sec-
ond, we can trace out the impact of each mouse-article over time through the
citations to that mouse-article by subsequent articles in the scientific literature.
While an imperfect and noisy indicator of overall scientific impact, citations
offer a systematic reflection of the process by which researchers acknowledge
how their efforts at any one research stage build on the tools and knowledge
developed by researchers in prior stages (Hagstrom, 1965; Merton 1973; de
Solla Price, 1976; Garfield 1979; Cole 2000). More specifically, our approach
exclusively examines the citation patterns associated with mouse-articles. Our
qualitative research suggests that nearly all citations to mouse-articles involve
the use of that specialized research mice in a follow-on experiment, and that
most researchers routinely include a citation to the original mouse-article when
a particular mouse is used in a follow-on project. Third, both the Cre-Lox
and Onco NIH agreements occurred well after the publication dates of a large
number of Cre-Lox and Onco mouse-articles; thus or each mouse-article we are
able to observe citations both before and after the NIH agreement (and compare
this to the pattern observed for our control groups which were unaffected by the

16Our approach builds on recent work applying a differences-in-differences econometric
framework to analyze the institutional and microeconomic foundations of knowledge accu-
mulation (Murray & Stern, 2007, Furman & Stern 2008, Huang & Murray 2008, Rysman &
Simcoe 2008).

17While these types of mice differ in the precise details of the specialized genetic manip-
ulation they allow, with the exception of Spontaneous mice, they are broadly similar in the
scope of application and relevance to human disease. Moreover, all three were patented and
could have been subject to strict enforcement. Spontaneous mice differ to the extent that
they were not subject to patents.

16



NIH agreements). Finally, while there was pressure on the NIH and DuPont to
move towards a more open regime, both the timing and extent of the openness
shock are arguably exogenous. Specifically, the NIH agreement could have been
reached, in principle, anytime from the early 1990s through the present. More-
over, our main control group – Knock-out mice – is likely to have been drawn
from a sample of similar scientific quality/importance and differ only insofar
as the patent over Knock-out technology was unenforced by the University of
Utah.

Taken together, this empirical approach allows us to exploit the timing of
the openness shocks to observe pre- and post-shock citation rates to the treated
mouse-articles (those associated with Cre-lox and Onco mice). By also includ-
ing untreated mouse-articles (Knock-out and Spontaneous mice), we can more
precisely identify a counterfactual estimate of the citation rate that would have
occurred if the NIH agreement has not been signed. By measuring citations to
Cre-lox and Onco mouse-articles before and after the openness shocks (and by
measuring the citations to mouse-paper articles unaffected by the MoUs) we can
separately identify the causal impact of both the Cre-lox and Onco openness
agreements.

Our estimation approach uses an annual count of forward citations to a given
mouse-article. As a starting point, we use a negative binomial to accommodate
the fact that citation data comes in the form of skewed count data. Given the
heterogeneity among scientific research articles, the nonlinear evolution of cita-
tions over time elapsed since initial publication, and the potential for differences
over time in citation practices, we include article, article-age and calendar year
fixed effects. To address the incidental parameters problem, we estimate a
conditional fixed effects estimator (Hausman, Hall & Griliches 1984). While the
precise functional form will depend upon the precise test, it is useful to illustrate
our overall approach by presenting the key estimation equations.

Our dependent variable is Citationsjt which measures the number of ci-
tations to a given mouse-article in a given calendar year. Our main specifi-
cations include an article fixed effect (γj , which is conditioned out in estima-
tion), year effects (βt) and article-age effects (δt−PubY ear). We then include
two measures to capture the impact of the NIH policy: OverallWindow and
PostOverallShock. OverallWindow is a dummy variable equal to one for
those mouse-articles impacted by a shock in the year of -and the year after-
the openness shock. 18. PostOverallShock is the key treatment variable and
is equal to one for mouse-articles impacted by the shock in citation-years after
the window period (i.e after 1999 for Cre-Lox mouse-articles, and after 2000 for
Oncomouse mouse-articles). Using a dataset composed of citations to mouse-
articles impacted by the shock and mouse-articles that are unaffected by the
shock, our main specification for the impact of the NIH agreements on the level
of citations is thus:

18Consistent with our discussion in Section 3, the window period for the Cre-Lox period
covers 1998 and 1999, and the window period for Oncomice covers 1999 and 2000.
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Citationsjt

= f(εjt; γj + βt + δt−PubY ear + Ψ0OverallWindowjt

+Ψ1PostOverallShockjt),

This specification tests for the impact of the NIH agreements by estimating
how the citation rate for a mouse-article changes after it is impacted by one
of the NIH agreements, accounting for fixed differences in the citation rate
across articles and relative to the non-parametric trend in citation rates for the
non-treated Knock-out and Spontaneous mouse-article control groups. This ap-
proach directly accounts for heterogeneity in the underlying quality of individual
articles and the evolution of citations over time.19

We then build on this baseline specification to estimate the impact of open-
ness on the nature and diversity of follow-on citations. To evaluate the impact
of the openness shocks on different types of citations, we estimate the param-
eters from a two-equation system that divides Citations into two (mutually
exclusive) types and estimates the effects of openness on each type. For exam-
ple, a key prediction of the model is that openness is associated with an increase
in the number of different researchers who utilize a given specialized research
mouse. To test this hypothesis, we can contrast the impact of a shift in openness
on follow-on publications by authors who have (or have not) cited a particular
mouse-article before:

NewAuthorCitationsjt

= f(εjt; γj + αNEW−OLDt+ βt + δNEW
t−PubY ear

+ΨNEW
CRE0

CreLoxWindowjt + ΨNEW
CRE1

PostCreLoxShockjt

+ΨNEW
ONCO0

OncoWindowjt + ΨNEW
ONCO1

PostOncoShockjt,

and

OldAuthorCitationsjt

= f(εjt; γj + βt + δOLD
t−PubY ear

+ΨOLD
CRE0

CreLoxWindowjt + ΨOLD
CRE1

PostCreLoxShockjt

+ΨOLD
ONCO0

OncoWindowjt + ΨOLD
ONCO1

PostOncoShockjt,

19It is also possible to separate out the treatment effect in several different ways. Our
empirical work includes several specifications that estimate the impact of each NIH agreement
separately by including separate window and treatment variables for the Cre-Lox shock and
Oncomouse shocks. Also, we are able to evaluate the short-term versus long-term impact of
the openness shocks by creating a measure a short-term treatment measure that captures the
impact on citations during the first three years after the window period, and a separate long-
term treatment measure that captures the permanent impact on citations for citation-years
more than four years after the initial treatment.
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We impose some parametric restrictions due to data constraints, in-
cluding setting the mouse-article fixed effects equal across both equations and
allowing the calendar year fixed effects to differ by a fixed percentage. Notably,
we allow for the publication age fixed effects to vary freely across both equations,
as the evolution of citations in the time since publication will differ significantly
for the two citation margins (in particular, most citations in the first few years
after publication will be associated with ”new” authors). Our hypothesis test
focuses on whetherΨNEW

CRE1
and ΨNEW

ONCO1
are significantly larger than ΨOLD

CRE1
and

ΨOLD
ONCO1

, respectively. In other words, we evaluate whether the change in ci-
tations occurring after the openness shock arises due to a particular increase in
citations by authors who had not previously cited a particular mouse-article.
We then develop similar specifications for several citation margins that capture
the notion of diversity across research lines described in our theory: citations
from new versus old institutions, using new versus old key words, and published
in new versus old journals. Similarly, we explore the research response to the
openness shocks along a given research line by comparing citations in applied
versus basic journals.

In all our analyses, we provide in brackets the coefficients as incidence-rate
ratios (a coefficient equal to one implies no effect on Citationsjt, whereas a
coefficient equal to 1.50 implies a 50% boost to Citationsjt). All models also
include and report block bootstrapped standard errors, clustered by mouse-
article (MacKinnon, 2002).

5 Empirical data

5.1 Data and sampling

The data for this study are drawn from the entire population of research mice
catalogued by the Mouse Genome Informatics (MGI) database. MGI consists of
over 13,000 unique mice, thereby establishing a population of mouse-articles. Of
this large population, we focus only on mouse-articles published between1992
and 1998 (the date of the first NIH agreement). As outlined above, we sample all
mouse-articles for four types of mouse engineering technologies defined by MGI:
Cre-lox, Onco, Knock-out and Spontaneous. In total, our sample includes 2638
novel mice linked to 2223 unique mouse-articles. The breakdown is as follows:
52 Cre-lox mice, 160 Onco mice, 2171 Knock-out mice, and 255 Spontaneous
mice.

For all 2223 mouse-articles we obtain information on publication year from
PubMed. We then used Thomson ISI Web of Science to collect all follow-
on (forward) citations in academic journals for the year immediately following
publication through to the end of 2006, to give a total of 525,865 citations.
Each citation included detailed information on last author, reprint author, in-
stitutional addresses, key words, and journal characteristics (including name,
impact factor and a basicness score). The citations were aggregated into 27,442
citation-year observations by combining all the citations received by a given
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mouse-article in any particular year as the basis for our analysis of the impact
of the NIH agreement on the level of follow-on innovation.

To capture a variety of measures of the type of follow-on innovation, we
code each of the citations according to a set of mutually exclusive categorical
variables. Following our theoretical predictions, we focus on margins intended
to capture horizontal experimentation across new lines. Our measures include
the diversity of researchers in follow-on innovation - new researchers and new
institutional affiliations, as well as the diversity of research - new key words and
new journals. To illustrate the construction of these variables, take the case of
new key words. We consider a citation to include one or more new key words
if the key word has never been used in citations to a particular mouse-article in
any prior year. A citation is coded old in all other instances. This construction
allows us to capture changes in the research landscape. Overall, we generate
four new/old categorical variables:

i. New/Old Last Author: defined as new if the last author (listed in ISI
Web of Science) has never appeared as a last author before in a citations to the
mouse-article in prior years, old otherwise.

ii. New/Old Institution: defined as new if any address in the institution
list has never appeared in an address list of citations to the - mouse-article in
prior years, old otherwise.

iii. New/Old Key Words: defined as new if a key word has never before
appeared in the key word list of citations to the mouse-article, old otherwise.

iv. New/Old Journal: defined as new if the journal of the citation has
never appeared before in the citations to the mouse-article, old otherwise.

We also categorize citations according to whether they are published in basic
or applied journals following a schema developed by Lim (2000). This allows
us to capture the predictions of our model regarding the impact of openness on
the vertical direction of follow-on innovation i.e. whether these shifts lead to
research further along particular research lines (towards commercialization).20

It is worth noting that in this analysis, multidisciplinary journals are classified
as “basic” thus adding a conservative bias against finding an increase in basic
research compared to applied research.

Taken together these measures allow us to explore the detailed predictions
of our theory regarding the ways in which changes in openness impact the type
of follow-on research along both horizontal and vertical dimensions. To do so,
we implement the econometric approach laid out above and group the cita-
tions in each citation-year for any mouse-article into two mutually exclusive
citation-year observations e.g. new key word citations and old key word cita-
tions, basic journal citations and applied journal citations etc. This gives us
54,884 citation-year observations and allows us to examine the impact of the
NIH agreements on the two distinctive margins. As a result, we can investigate

20Our Basic/Applied Journal definition is based on work by Lim (2000) who used the
measure building on a classification scheme developed by CHI Research, Inc. According to
Lim, “CHI awards each journal a score from zero to four. For the biomedical sciences, they
correspond to clinical observation, clinical mix, clinical investigation and basic science (see
Hicks 1996, for more details)” (Lim 2000 p. 129).
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the hypothesis that changes in openness create more diverse lines of research,
pursued by a more diverse range of scientists. We also investigate where along
the research line (from basic to applied) the additional research is taking place.
One caveat is worth noting: We do not examine the impact of openness on
the academic/industry citation margin. One reason for this is that the open-
ness shocks in our analysis are directed specifically to public-sector researchers.
Further, for our entire sample we find that 97.5% of all forward citations have
at least one of their authors in public institutions (of which 92.5% have only
public-sector authors, and only 5% are public-private mix). With only 2.5%
of citations having all private-sector authors, this margin is insignificant in the
field of engineered mice.

5.2 Variables and summary statistics

Our empirical analysis measures follow-on innovation, as proxied by citations,
to the 2223 mouse-articles in our sample. Table 1 provides variable names and
definitions and Table 2 reports summary statistics for our data. Our mouse-
articles are published between 1992 and 1998 (mean = 1995) and have an average
of seven authors. We trace citations to each mouse-article from the year after
its publication until 2006 (with the mean of CitationY earjt being 2001), giving
us 27,442 citation-year observations. The mouse-articles receive a mean of 231
TotalCitationsj . Our key dependent variable in the initial set of regressions
is AnnualCitationsjt measuring the total number of citations to mouse-article
j in year t. The average number of annual citations for our mouse-articles is
18.32 (with a minimum of 0 and maximum of 336 citations received in any year).
This is higher than the mean in other samples of life science papers (e.g. Murray
& Stern 2007), highlighting the importance of mouse genetics research in this
period.

TABLE 1 HERE
TABLE 2 HERE

In our core analyses we break the annual citation count for any mouse-article
into categorical margins of interest. As outlined above, to measure diversity of
citing authors, we construct the two dependent variables: NewAuthorCitationsjt

and OldAuthorCitationsjt by measuring number of citations by new (last) au-
thors to article j in year t; and the number of citations by old (last) authors to
article j in year t, respectively (mean = 11.0 and 3.7 respectively). We then cre-
ate an additional new/old dependent variable: NewInstitutionCitationsjt and
OldInstitutionCitationsjt (mean = 16.6 and 9.7 respectively) to capture diver-
sity at the institutional-level. Likewise, to capture diversity across research lines
we code citations with new and old key words as NewKeywordCitationsjt and
OldKeywordCitationsjt (mean = 70.9 and 52.3 respectively) as well as citations
in new and old journals as NewJournalCitationsjt and OldJournalCitationsjt

(mean = 7.5 and 5.9 respectively). Following a similar logic, and to capture ver-
tical shifts in research along particular research lines, we defineBasicCitationsjt
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and AppliedCitationsjt, measuring the number of citations in basic journals to
article j in year t; and the number of forward citations in applied journals to
article j in year t, respectively (mean = 8.725 and 6.947 respectively). 21

As described in our empirical specification, we create three shock variables.
The first is the PostOverallShockjt, equal to one if the article j is subject to
either of the two MoU openness shocks, and if the citation year is after the
window period for the shock (mean = 0.0482). The second and third variables
capture the specific Cre and Onco shocks: PostCreLoxShockjt is equal to
one if the article j is subject to the Cre-lox MoU openness shock, and if the
citation year is after the Cre-lox window period for the shock (mean = 0.013)
and PostOncoShockjt equal to one if the article j is subject to the Onco MoU
openness shock, and if the citation year is after the OncoWindow period (2001
or later) (mean = 0.035).

TABLE 3 HERE

6 Results

Our empirical analysis estimates the causal impact of the openness shocks exem-
plified by the Memorandum of Understanding signed by DuPont, NIH and JAX
dramatically opening up the access to Cre-lox (1998) and Onco (1999) mice for
academic researchers. Recall that these agreements both reduced downstream
expropriation of follow-on innovators (in the case of Cre-lox and Onco) by de-
creasing the reach-through rights available to DuPont, and increased access for
follow-on innovators to the mice themselves (particularly in the case of Cre-lox
mice). Our approach is to observe the annual citations to mouse-articles linked
to Cre-lox and Onco mice in the pre- and post- shock period. By comparing
the citation patterns to Knock-Out mice and Spontaneous mice unaffected by
the MoUs and to the pre-shock trends for the treated mice, we can identify the
impact of the shocks to openness.

Our analysis proceeds in several stages. First, we investigate the impact
across both shocks on the overall flow of citations received by our mouse-articles.
We also decompose the shocks to determine the specific impact of the Cre-
lox and Onco shocks to better characterize their different causal impact. In
both cases we also examine the time dynamics of the shocks. We then turn
to the core of our analysis which first examines the Overall, Cre-lox and Onco
shocks on the horizontal flow of research – by different researchers and across
research lines and then the vertical flow of research along a given line (from
basic to applied) . We capture the horizontal margin of ”new” compared to ”old”

21The sum of the annual means of our different margins do not add up to the mean annual
citation count for several reasons. First, due to data-matching issues we are not always able
to identify 100% of citations as belonging to one or the other margin; this leads to a sum lower
than the mean annual citation count. Further, for the counts of institutions and keywords,
each citation contains multiple entries for these fields, leading to counts higher than the mean
annual citation count. For example, in the case of keywords, the sum of the margin means is
just over 120, indicating that the average paper has between 6 and 7 keywords.
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categories of citations, specifically key words, journals, authors, and institutions
. In contrast, we use the vertical margin of basic versus applied journals to
capture the downstream nature of research. By analyzing the impact of openness
within the differences-in-differences framework, we are particularly interested
in coefficient on the “shock” variable as this captures the change in citations
(overall or for a particular margin) in the pre- and post-shock period. We focus
on the IRR in our presentation because it is easily interpreted: it provides the
multiplicative effect on the expected number of citations received with a one unit
change in a regressor (i.e., the null hypothesis of no effect yields a coefficient of
1.0). For example an IRR of 1.25 on the shock variable can be interpreted as a
25% boost in citations in the post shock period.

6.1 Impact of openness on the level of follow-on research

Our regression results begin in Table 4 with a negative binomial specification us-
ing TotalCitations as the dependent variable. All specifications use the full set
of fixed effects. Equation (4-1) column represents our baseline model, with the
PostOverallShock variable. After accounting for the window period, we find
that the coefficient on PostOverallShock is significant. On average, mouse-
articles affected by the shocks (Cre-lox and Onco mouse-articles) received an
additional 21% increase in their annual citation rates after the MoUs are signed.
The effect is identified both from the large set of control mouse-article papers
and from the pre- and post- variations in article ages. Under specification (4-2)
we divide the primary explanatory variable into PostOverallShockShortRun
and PostOverallShockLongRun but make no other changes to the analysis.
We find that the boost in overall citation rates is significant in both periods
and is actually growing over time, with a 15% increase through 2003 and a
32% increase for 2004-2006. More than simply a lag in publishing after the
initial PostOverallShock period (which is accounted for with the window vari-
able), the significant and increasing boost in both periods represents a positive
feedback effect, where the initial boost focuses greater attention on the lines of
research affected by the shocks, resulting in even higher citation rates in the next
round of scientific articles. In (4-3) we repeat these analysis but make separate
estimates for the coefficients on the Cre-lox and Onco shocks - a specification
that more accurately captures the differences in the two shocks (with respect
to openness in the pre period). In (4-3), we show that the PostCreLoxShock
variable is associated with a statistically significant (but noisy) increase of 18%
in citations for Cre-lox mouse-articles compared to 21% for the PostOncoShock
variable.

These results provide strong support for one key claim of this paper – that
positive shocks to openness foster research intensity, rather than hindering it
because of appropriability concerns surround critical research outputs. This
adds support to previous empirical results, for example by Furman and Stern
(2006), showing that the deposit of individual cell-lines (which provides openness
through formal access) also increases follow-on innovation. In a complementary
result, Murray and Stern (2007) find that limits on openness with the grant of
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intellectual property rights over knowledge have the converse effect; it decreases
follow-on citations. Taken together, these results highlight the sensitivity of
follow-on researchers to a variety of openness conditions, and provide increasing
support for the perspective that these results are driven by researchers shifting
their research choices rather than shifting their citations – it is hard to imagine
the research community being so strategic in their citations that they increase
and decrease their citations according to the precise timing and degree of open-
ness shocks. Furthermore, our results on temporal dynamics are consistent with
our theoretical setup, specifically the multi-staged view of innovation: if open-
ness leads to more research activity and potentially to a branching out of new
research lines (a conjecture we test in our next set of regressions) then these
new lines would themselves generate follow-on research activity, amplifying over
time the effects of any shocks to openness.

TABLE 4 HERE

To examine the impact of the openness shocks on the horizontal expansion of
follow-on research, and to move to specifications that capture our core theoreti-
cal insight - that openness will have a more significant impact on new, early-stage
research lines, where openness is complementary with freedom - we examine the
impact of the openness shocks on several citation margins. As explained in the
Estimated Equations section, we consider a series of two-equation systems that
allows us to contrast various margins of the annual citations, helping to clarify
the overall changes in behavior.

6.2 Impact of openness on the type of follow-on research:
horizontal exploration

In Tables 5, 6 and 7, we present our analysis for the second main theoretical
claim in our model predicting that greater openness will lead to greater horizon-
tal experimentation, spawn a diverse array of new research lines and encourage
the participation of new researchers who have previously not contributed to this
arena of knowledge. We first present our evaluation of the impact of openness
shocks on the diversity of researchers participating in follow-on research. Our
key comparison is between researchers listed as the last author (the senior sci-
entist) on citations who have never previously been listed on a citation to the
mouse-article of interest, captured in our measure, NewAuthorCitations, and
those previously listed in a citation to the particular mouse-article, measured by
OldAuthorCitations. In the stacked regressions presented in (5-1a) and (5-1b)
we estimate whether the marginal impact of the PostOverallShock is different
for new versus old last-authors. When we separately evaluate the Cre-lox and
Onco shocks on new and existing authors (5-2a) and (5-2b), we find that the
Cre-lox openness shock leads to a 25% increase in new last-author citations,
with no increase in old last-author citations. Similarly, the Onco shock leads
to a 22% increase in new-author citations. Turning to the time dynamics for
the overall shock (5-2a and 5-2b), in the short run we find an 18.5% increase
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in citations by new authors, compared to statistically insignificant increase in
citations by old authors (with the difference of the coefficients significant at the
1% level); the results are 36% versus 21% for new versus old authors in the
long-run. 22 This provides strong evidence for the hypothesis that an increase
in openness leads to new lines of research, as the shocks led to new authors
focusing on the field.

In the final set of specifications in Table 5 (5-4a and 5-4b), we turn to
an alternative measure of the diversity captured by the institutional affilia-
tion. In this case institutions are coded from the address field of the partic-
ular mouse-article citation. This is particularly informative because it allows
us to explore the micro-foundations of openness and mouse exchange at the
institutional level. If researchers within a given institution (e.g. Northwest-
ern University) share mice freely with one another once one of their colleagues
has made the investment in accessing a mouse (or engineering one) then we
would expect the surge in new authors to come predominantly from new insti-
tutions. Furthermore, any university-level agreement made prior to the MoU
made follow-on research possible for all scientists within the university. As
throughout Table 5, we used stacked regressions to estimate specifications com-
paring NewInstitutionCitations and OldInstitutionCitations. Comparing (5-
4a) and (5-4b), the impact of the overall openness shock increases citations from
new institutions by 20% compared to 14% from old (existing) institutions. In
other words, while the effect is less dramatic than the increased diversity of
authors, the boost in marginal citations does accrue (significantly) to authors
affiliated with new institutions.

TABLE 5 HERE

While our theoretical predictions highlight the importance of openness on
reducing the fixed cost of critical upstream inputs into research projects, an-
other important aspect of openness is the degree to which it facilitates horizontal
experimentation by researchers now free to match with a variety of ideas, par-
ticularly given the conditions of freedom existing in the academic sector that
we examine here. We capture this horizontal diversity using the measure of key
words represented in a particular citation. Recall that these key words are de-
fined by the cataloguing service (ISI Web of Science) and therefore not subject
of strategic intervention by researchers themselves. We compare the citation
margin between NewKeywordCitations and OldKeywordCitations in (6-1a)
and (6-1b) finding that the PostOverallShock is 25% for new key words and

22We have experimented extensively with examining coefficients on a year-by-year basis
relative to the time of the shock, in order to test for the presence of a pre-shock trend in
either of the treatment groups (relative to controls) and to examine the evolution of each
citation margin after the shock. While the pre-deposit trend is not statistically significant for
any of the citation margins that we study, it is also true that these year-by-year coefficients
are imprecisely estimated, in part because of the relatively small number of annual citation-
year observations in the treatment groups. Instead, we estimate two coefficients for each
citation margin to evaluate the short-term versus long-term effects of the openness shifts,
which reinforce the idea that the impact of the policy had a larger impact after a period of
adjustment.
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and insignificant for old key words. This confirms our prediction that openness
does indeed have a substantial impact on the diversity of new research lines.
When we include the time dynamics (6-2a) and (6-2b) we find that the short
run PostOverallShock effect on new key words is 20%, and increases to 35%
in the long run (both are significant at the 1% level). The old key word impact
is insignificant. Taken together these provide strong evidence for expanding re-
search lines. When we decompose the openness shock into the Crelox and Onco
shocks, the results are also dramatic. The PostCreLoxShock is 30% while the
Onco shock is only 20% (significant at the 5% and 10% level respectively) sug-
gesting that it is the Cre-lox shock that has the most salient impact on the
initiation of diverse early-stage lines. Neither the Cre-lox nor the Onco Shocks
have a significant impact on old key words.

TABLE 6 HERE

Our final investigation to establish the impact of openness on diversity is the
emergence of research lines focusing on new areas of scientific study captured in
journals. As a proxy for this breadth of research, we compare the citation mar-
gin between NewJournalCitations and OldJournalCitations, where a ”new”
journal is one which has never before published an article citing the original
mouse-paper article in question. In Table 7, we see that the PostOverallShock
in (7-1a) and (7-1b) leads to a 24% increase (significant at the 1% level) in
citations from new journals, and no significant increase in citations from old
journals. We further investigate the impact of openness in (7-2a) and (7-2b)
which show that the short run effect is 22% for new journals increasing to 27%
in the long run, while there is no short run impact for old journals, but the
long run PostOverallShock is 23%. Finally, in (7-3a) and (7-3b) we exam-
ine the Cre and Onco shocks, finding that the Cre-lox shock has an impact on
NewJournalCitations of 24% but the effect is noisy and only significant at the
15% level, however, the Onco shock is leads to a 24% increase to citations in new
journals with no significant increase in citations in old journals (significant at
the 1% level). As with our analysis of key words, the pattern of citations to new
and old journals indicates that the increase in openness leads to a greater diver-
sity of research topics stemming from the affected mouse-articles. This supports
our theoretical prediction of greater horizontal experimentation as researchers
have greater access to the inputs of upstream research.

TABLE 7 HERE

6.3 Impact of openness on the type of follow-on research:
vertical exploitation

We now turn to the effects of openness shocks on the vertical distribution of
research, in other words, whether openness shocks move research along any par-
ticular line towards later stage projects. We do this by examining the marginal
impact of the openness shocks on the production of research in basic versus
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applied research journals. Recall that these categories are determined by exam-
ining the journal in which citations are published, categorized according to how
close to clinical application the work typically published (across the entire stock
of articles published in the journal over a five year time period). In (8-1a) and (8-
1b), we find that the BasicCitations dependent variable increases 23% during
the post-shock period; at the same time, the AppliedCitations variable expe-
riences 18% increase during the post-shock period. This suggests that across
both shocks, the average impact accrues to both basic and applied citations. In
our next regressions, however, we provide deeper insights into these patterns by
again considering the contrasting natures of the Cre-lox and Onco shocks and
disentangling their distinctive implications. Recall that in the pre-shock period,
not only were there stringent reach-through rights associated with Cre-lox mice,
but also very limited access as ex ante enforcement of IP rights had limited their
circulation and exchange. In contrast, Onco mice were made available through
JAX - although these researchers remained concerned that if they found inter-
esting commercial applications they may be subject to ex post IP enforcement.
As a result, the Onco shock also reduced reach-through rights but had a more
limited impact on access. The specifications in (8-2a) and (8-2b) reveal that
the Cre-lox shock is concentrated in basic citations, while the Onco shock has a
significant effect only on applied citations. Specifically, the Cre-lox shock leads
to a dramatic 78% increase in basic citations during the post-shock period, but
has a 21% decrease on the applied-research citation flows (significant at the 10%
level). By contrast, the impact of the Onco shock is concentrated in the more
applied research stages and leads to a 56% increase during the period through
2006 for applied citations; at the same time, the Onco shock has no significant
impact on basic citations. This is consistent with the view that when upstream
access is already secured (as in the case for Onco mice), then an agreement that
shifts the balance of appropriability toward follow-on innovators and away from
the initial innovator (DuPont), then there is more applied research.

TABLE 8 HERE

These results are further reinforced when we look at the time dynamics (8-
3a) and (8-3b). In this case, rather than look at the time dynamics for the
overall shock, we examine the time dynamics for the Cre-lox and Onco shocks
separately. We find that the Cre-lox shock has a 63% increase in basic citations
in the short run and a dramatic 114% increase over the next three years (through
2006). There is a significant negative impact on applied citations in the short
run (-25%) but no change in the long run. While we might have anticipated
that there would be a gradual shift to applied research in the long run, this
suggests that the early stages of the Cre-lox research lines take time and that
applications are relatively far away. Conversely, in the Onco case, the shock to
citations is entirely concentrated in applied research with a 51% boost in the
short run and 63% in the long run.

Taken together, our findings suggest that both the Cre-lox and Onco shocks
had an important impact on the rate and nature of follow-on innovation. Of
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course our interpretation depends upon the extent to which the MoU shocks to
openness were truly exogenous. After all, they reflected the endogenous choice of
DuPont, JAX, and the NIH. There is, however, strong evidence to suggest that
the Cre-lox shock and (to a lesser extent) the Onco shock were unanticipated in
their timing and terms by the scientific community and that while the academic
community had agitated for broader access, this had been a continuous request
starting in the early 1990s, rather than a significant sea change in response
to changing technical opportunities (Murray, 2008). Moreover, our focus is on
the behavioral (citation) response of over 5,000 follow-on researchers who were
not part of the intense, but largely private, negotiations. More than simply
a policy announcement, or even an agreement that ratified behavior already
taking place, the MoUs directly and dramatically changed the openness of a set
of key research inputs.

7 Conclusion

In this paper we argued that openness of upstream research does not simply
encourage higher levels of downstream exploitation: it also raises the incentives
for additional upstream research by encouraging the establishment of entirely
new research directions. We tested this hypothesis by examining a “natural ex-
periment” in openness within the academic community: NIH agreements during
the late 1990s that circumscribed IP restrictions for academics regarding certain
genetically engineered mice.

First, we found, not surprisingly, that there is an increased overall level
of follow-on research taking place after the NIH-DuPont-JAX openness agree-
ments. Building on this initial result, we explored the particular margins where
this increased innovation is taking place, developing measures of innovation that
allowed us to test the predictions of our theory. First, we obtained robust ev-
idence that increased openness was associated with the exploration of a wider
range of more diverse research paths, which in turn reflects an increase in hori-
zontal experimentation. This finding highlights a feature of early stage knowl-
edge overlooked in many of the current models of innovation - the fact that it is
non-rivalrous and as a consequence, can, in principle, be applied across multiple
later-stage domains and applications. Second, when we compared the impact
of openness on horizontal exploration versus vertical exploitation we found that
on balance, when pre-existing IP restrictions limited access to research materi-
als (rather than simply serve as a threat of potential future enforcement), the
main impact of openness was an increase in more basic and more high-quality
follow-on research publications. In contrast, when prior arrangements (informal
or formal) had allowed for access even with some threat of enforcement, the
openness shock would mainly affect the more applied follow-on research.

Our results highlight that the current literature on intellectual property and
innovation has neglected a key potential cost of intellectual property - the limits
that IP rights may place on the diversity of research that would otherwise be
pursued by follow-on innovators taking a single powerful idea and experimenting
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across multiple research lines.
Our research in this paper could be extended in several interesting direc-

tions. A first avenue would be to reassess the Bayh-Dole Act in light of our
analysis. Indeed our results highlight one of the possible dangers of excessive IP
enforcement: if IP is used to restrict openness particularly at very early stages
of the research line, then it is possible that the rich array of exploration projects
that are key to diverse follow-on innovation will be stifled.

Second, our framework suggests that more attention be paid by economists
to recent attempts by the corporate sector to generate new sources of profit
built on the openness of knowledge production by others (Huang & Murray
2008). Thus, Tapscott and Williams (2006) explain how IBM has managed to
recover from competition with Microsoft by engaging in the openness promoted
by Linux. More generally, a systematic analysis of the forces and trade-offs
at work in an economic environment with both proprietary and open firms
competing with each other, awaits future research.
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TABLE 1: VARIABLES & DEFINITIONS  

 
VARIABLE  DEFINITION  SOURCE  

 

PUBLICATION CHARACTERISTICS  

Publication Yearj  Year in which article j is published  PM  

# Authorsj  Count of the number of authors of Article j  PM  

Total Citationsj  # of FORWARD CITATIONS from publication date through 2006  SCI  

 

CITATION-YEAR CHARACTERISTICS  

Annual Citations  # of Forward Citations to Article j in Year t  SCI 

Citation Yearjt  Year in which FORWARD CITATIONS are received  SCI  

 

CITATION CHARACTERISTICS  

New Author Citation Dummy variable equal to 1 if the last author has not appeared in the citations 

to the mouse-article in prior years; 0 otherwise 

PM  

Old Author Citation Dummy variable equal to 1 if the last author has appeared in the citations to 

the mouse-article in prior years; 0 otherwise 

PM  

New Institution Citation Dummy variable equal to 1 if the institutional affiliation has not appeared in 

the citations to the mouse-article in prior years; 0 otherwise 

PM  

Old Institution Citation Dummy variable equal to 1 if the institutional affiliation has not appeared in 

the citations to the mouse-article in prior years; 0 otherwise 

PM  

New Key Word Citation Dummy variable equal to 1 if the key word has not appeared in the citations to 

the mouse-article in prior years; 0 otherwise 

PM  

Old Key Word Citation Dummy variable equal to 1 if the key word has appeared in the citations to the 

mouse-article in prior years; 0 otherwise 

PM  

New Journal Citation Dummy variable equal to 1 if the publishing journal has not appeared in the 

citations to the mouse-article in prior years; 0 otherwise 

PM  

Old Journal Citation Dummy variable equal to 1 if the publishing journal has appeared in the 

citations to the mouse-article in prior years; 0 otherwise 

PM  

Basic Citation Dummy variable equal to 1 if the publishing journal is identified as a basic-

research journal (SOURCE: CHIBasic variable); 0 otherwise  

PM  

Applied Citation Dummy variable equal to 1 if the publishing journal is identified as an applied-

research journal (SOURCE: CHIBasic variable); 0 otherwise  

PM  

At Least One Public Author  Dummy variable equal to 1 if at least one institutional affiliation associated 

with the citing article is a university or government organization; 0 otherwise  

PM  

Private Author Dummy variable equal to 1 if all institutional affiliations associated with the 

citing article is a biotechnology or pharmaceutical firm; 0 otherwise  

PM  

 

OPENNESS SHOCK CHARACTERISTICS  

Post Overall Shockjt  Dummy variable equal to 1 if Article j is associated with an openness MOU 

agreement (Cre-Lox, Onco) which is in effect in year t. 

MGI 

Post Overall Windowjt  Dummy variable equal to 1 if Article j is associated with an openness MoU 

agreement (Cre-Lox, Onco) which is in its initial period in year t. 

MGI  

Post Crelox Shockjt  Dummy variable equal to 1 if Article j is associated with the Cre-Lox openness 

MoU and that agreement is in effect in year t. 

MGI  

Post Crelox Windowjt  Dummy variable equal to 1 if Article j is associated with the Cre-Lox openness 

MoU and that agreement is in its initial period in year t. 

MGI  

Post Onco Shockjt  Dummy variable equal to 1 if Article j is associated with the Onco openness 

MoU and that agreement is in effect in year t. 

MGI  

Post Onco Windowjt  Dummy variable equal to 1 if Article j is associated with the Onco openness 

MoU and that agreement is in effect in year t. 

MGI  



TABLE 2: MEANS & STANDARD DEVIATIONS  

 

VARIABLE  N  MEAN  STD. DEV. MIN  MAX  

 

PUBLICATION CHARACTERISTICS (N = 2,223 original publication) 

Publication Yearj  2223 1995.35 2.83 1983 1998 

# Authorsj  2223 7.034188 3.41921 1 34 

Total Citationsj  2223 209.60 231.22 1 2543 

 

CITATION-YEAR CHARACTERISTICS (N = 27,442 citation-year observations) 

Citation Yearjt  27442 2001.100 3.331 1993 2006 

Annual Citations jt  27442 18.317 21.132 0 336 

New Author Citations jt 27442 11.027 13.000 0 243 

Old Author Citations jt 27442 3.712 5.212 0 58 

New Institution Citationsjt 27442 16.616 17.427 0 287 

Old Institution Citations jt 27442 9.671 13.346 0 135 

New Key Word Citationsjt 27442 70.879 65.864 0 794 

Old Key Word Citations jt 27442 52.252 59.326 0 620 

New Journal Citations jt 27442 7.476 7.676 0 94 

Old Journals Citations jt 27442 5.866 7.406 0 81 

Basic Citation jt 27442 8.725 10.942 0 151 

Applied Citation jt 27442 6.947 10.378 0 157 

All Public Authors 

Citation jt 
27442 15.115 17.110 0 253 

At Least One Private 

Author Citationjt 
27442 1.349 2.697 0 45 

 

OPENNESS SHOCK CHARACTERISTICS (N = 27,442 citation-year observations) 

Post Overall Shockjt  27442 0.0482 0.2143 0 1 

Overall Windowjt  27442 0.0147 0.1204 0 1 

Post Crelox Shockjt  27442 0.0133 0.1144 0 1 

Crelox Windowjt  27442 0.0031 0.0552 0 1 

Post Onco Shockjt  27442 0.0350 0.1837 0 1 

Onco Windowjt  27442 0.0117 0.1074 0 1 

 

 



 TABLE 3: SUMMARY STATISTICS BY MOUSE TECHNOLOGY 

 

 MOUSE TECHNOLOGY 

VARIABLE N CRELOX ONCO OTHER GM SPONTANEOUS 

 

PUBLICATION CHARACTERISTICS (N = 2,223 original publication) 

Publication Yearj  2223 1996.549 1991.737 1995.448 1990.789 

# Authorsj  2223 5.250 5.944 7.341 4.718 

Total Citationsj  2223 158.831 228.959 234.198 68.411 

 

CITATION-YEAR CHARACTERISTICS (N = 27,442 citation-year observations) 

Annual Citations  27442 15.3340 13.3326 20.9152 3.8202 

New Author Citations 27442 10.1294 7.6285 12.5957 2.3799 

Old Author Citations 27442 2.6305 2.2984 4.3015 0.6584 

New Institutions 27442 15.6910 11.0114 18.9562 3.9763 

Old Institutions 27442 8.7286 6.1850 11.1357 1.8031 

New Key Words 27442 75.4572 50.7871 80.2499 17.5752 

Old Key Words 27442 35.7996 39.9560 59.6379 11.1171 

New Journal Citations 27442 7.5511 4.7736 8.5364 1.7752 

Old Journal Citations 27442 4.7182 4.6010 6.6681 1.2618 

Basic Citations 27442 8.8288 5.0855 9.9965 2.1295 

Applied Citations 27442 3.3612 6.4306 7.8953 1.2437 

All Public Author 

Citations 
27442 13.2443 10.9772 17.2503 3.1377 

At Least One Private 

Author Citations 
27442 0.7724 0.9591 1.5539 0.2583 

 



TABLE 4: IMPACT OF OPENNESS SHOCKS ON ANNUAL CITATION FLOWS 

 
  NEGATIVE BINOMIAL  

Dep Var = ANNUAL CITATIONS  
[Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

 

(4-1)  
Baseline Model with 

Overall Shock 

(4-2)  
Overall Shock with 

Time Dynamics  

(4-3)  
Baseline Model with  

Cre & Onco Shocks 

Post Overall Shock  [1.213]*** 
0.1934 

(0.0507) 

  

Post Overall Shock 

Short-run   
[1.152]** 

0.1411 

(0.0591) 

 

Post Overall Shock 

Long-run   
[1.320]*** 

0.2773 

(0.0777) 

 

Post Cre-lox Shock  

  
[1.178]* 

0.1637 

0.0919 

Post Onco Shock 

  

[1.212 ]*** 

0.1921 

(0.0610) 

Window+ 

- Overall 

 

 

- Cre 

 

- Onco 

[1.119]*** 

0.1124 

(0.0405) 

 

- 

 

- 

[1.122]** 

0.1152 

(0.0472) 

 

- 

 

- 

 

- 

 

[0.983] 

-0.017 

(0.123) 

[1.163]*** 

0.151 

0.0448 

Parametric 

Restrictions  

     

Age FEs = 0     

Year FEs = 0     

Log-likelihood  -67168.977 -67153.037 -67164.516 

# of Observations  27428 27428 27428 

  

Significance levels: * 10% ** 5% *** 1% 

Coefficients for the Window period are included in all regressions but suppressed in order to focus on key variables in the analysis. 

IRRs reported in brackets; raw coefficients reported in middle line. 

 

 

 



TABLE 5:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  

BY NEW VS. OLD ‘LAST AUTHORS’ & BY NEW VS. OLD INSTITUTIONS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

 

(5-1a)  
DV= 

New Author 

Citations 

(5-1b)  
DV= 

Old Author 

Citations 

(5-2a)  
DV= 

New Author 

Citations 

(5-2b)  
DV= 

Old Author 

Citations 

(5-3a)  
DV=  

New Author 

Citations 
With Time Dynamics 

(5-3b)  
DV=  

Old Author 

Citations  
With Time Dynamics 

(5-4a)  
DV= 

New 

Institution 

Citations 

(5-4b)  
DV= 

Old  

Institution 

Citations 

Post Overall Shock  [1.250]*** 

0.223 

(0.054) 

[1.082] 

0.0785 

(0.0789) 

  

 

 [1.202]*** 

0.184 

(0.0494) 

[1.142]** 

0.133 

(0.0612) 

Post Overall Shock 

Short-run    

  [1.185]*** 

0.170 

(0.0538) 

[0.994] 

-0.0056 

(0.814) 

  

Post Overall Shock 

Long-run    

  [1.363]*** 

0.310 

(0.0695) 

[1.207]** 

0.188 

(0.0801) 

  

Post Cre-lox Shock  

  

[1.251]** 

0.224 

(0.108) 

[0.992] 

-0.0083 

(0.099) 

  

  

Post Onco Shock 

  

[1.220]*** 

0.199 

(0.067) 

[1.127] 

0.120 

(0.0736) 

  

  

Parametric 

Restrictions  

           

Separate Age FEs = 

0  

        

Common Year FEs = 

0  

        

Log-likelihood          

# of Observations          

 Significance levels: * 10% ** 5% *** 1% 



TABLE 6:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  

WITH NEW VS. OLD KEY WORDS  
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

 

(6-1a)  
DV=New 

Key Word 

Citations 

(6-1b)  
DV=Old  

Key Word 

Citations 

(6-2a)  
DV= New  

Key Word 

Citations 
With Time Dynamics 

(6-2b)  
DV= Old  

Key Word 

Citations  
With Time Dynamics 

(6-3a)  
DV=New  

Key Word 

Citations 

(6-3b)  
DV=Old Key 

Word 

Citations 

Post Overall Shock  [1.250]*** 

0.223 

(0.0738) 

[0.977] 

-0.0230 

(0.0732) 

 

   

Post Overall Shock 

Short-run    

[1.197]*** 

0.180 

(0.0586) 

[0.926] 

-0.0765 

(0.0666) 

  

Post Overall Shock 

Long-run    

[1.350]*** 

0.300 

(0.0843) 

[1.052] 

0.0504 

(0.0784) 

  

Post Cre-lox Shock  

  

  [1.302]** 

0.264 

(0.104) 

[0.894] 

-0.112 

(0.112) 

Post Onco Shock 

  

  [1.202]* 

0.184 

(0.0965) 

[1.023] 

0.0225 

(0.115) 

Parametric 

Restrictions  

        

Separate Age FEs = 

0  

      

Common Year FEs = 

0  

      

Log-likelihood        

# of Observations        

 Significance levels: * 10% ** 5% *** 1% 



TABLE 7:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  

IN NEW VS. OLD JOURNALS  
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

 

(7-1a)  
DV= 

New Journal 

Citations 

(7-1b)  
DV= 

Old Journal 

Citations 

(7-2a)  
DV=  

New Journal 

Citations 
With Time Dynamics 

(7-2b)  
DV=  

Old Journal 

Citations  
With Time Dynamics 

(7-3a)  
DV= 

New Journal 

Citations 

(7-3b)  
DV= 

Old Journal 

Citations 

Post Overall Shock  [1.237]*** 

0.213 

(0.0711) 

[1.108] 

0.103 

(0.0706) 

 

   

Post Overall Shock 

Short-run    

[1.223]*** 

0.201 

(0.0546) 

[1.022] 

0.0213 

(0.0599) 

  

Post Overall Shock 

Long-run    

[1.274]*** 

0.242 

(0.0776) 

[1.234]*** 

0.210 

(0.0764) 

  

Post Cre-lox Shock  

  

  [1.235] 

0.211 

(0.145) 

[1.105] 

0.100 

(0.133) 

Post Onco Shock 

  

  [1.236]*** 

0.212 

(0.065) 

[1.108] 

0.103 

(0.087) 

Parametric 

Restrictions  

        

Separate Age FEs = 

0  

      

Common Year FEs = 

0  

      

Log-likelihood        

# of Observations        

 Significance levels: * 10% ** 5% *** 1% 

 



TABLE 8: IMPACT OF OPENNESS SHOCKS ON CITATIONS  

IN BASIC VS. APPLIED JOURNALS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

(8-1a)  
DV=  

Basic Journal 

Citations 

(8-1b)  
DV=  

Applied Journal 

Citations 

(8-2a)  
DV= 

Basic Journal 

Citations 

(8-2b)  
DV=  

Applied Journal 

Citations  

(8-3a)  
DV= 

Basic Journal 

Citations  

with Time Dynamics 

(8-3b)  
DV= 

Applied Journal 

Citations  

with Time Dynamics 

Post Overall Shock  [1.225]*** 

0.203 

(0.0732) 

[1.184]** 

0.169 

(0.0766) 

  

  

Post Cre-lox Shock  

  

[1.777]*** 

0.575 

(0.0975) 

[0.797]* 

-0.2269 

(0.117) 

  

Post Onco Shock 

  

[1.029] 

0.029 

(0.0611) 

[1.562]*** 

0.446 

(0.0739) 

  

Post Cre-lox Shock 

Short-run      

[1.631]*** 

0.4891 

(0.0914) 

[0.745]** 

-0.2950 

(0.1196) 

Post Cre-lox Shock 

Long-run      

[2.140]*** 

0.7606 

(0.1178) 

[0.915] 

-0.0889 

(0.1522) 

Post Onco Shock 

Short-run      

[1.030] 

0.0298 

(0.0756) 

[1.514]*** 

0.4150 

(0.0788) 

Post Onco Shock 

Long-run      

[1.029] 

0.0290 

(0.0861) 

[1.632]*** 

0.4898 

(0.1050) 

Parametric 

Restrictions  

      

Separate Age FEs = 

0  

      

Common Year FEs = 

0  

      

Log-likelihood        

# of Observations        

 Significance levels: * 10% ** 5% *** 1% 


