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Abstract

This paper provides a unified theoretical framework to analyze the macroe-

conomic consequences of capital account liberalizations and capital controls, like

capital inflow taxes. It identifies two pecuniary externalities that lead to ineffi-

cient outcomes in terms of welfare and to financial instability. The first exter-

nality undermines the “terms of trade hedge” while the second leads to excessive

liquidity mismatch and leverage. Short-term debt flows, i.e. “hot money”, stabi-

lize the economy up to a certain level of global imbalance, but expose the system

to sudden stops and financial instability.
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1 Introduction

For a long time it was the Washington consensus to promote free trade and full capital

account liberalization. A world in which goods and capital can flow freely was con-

sidered as the guiding north star and any incremental liberalization towards this ideal

was considered as a step in the right direction. Recently, the IMF took on a more nu-

anced view, see Ostry, Ghosh, Habermeier, Chamon, Qureshi, and Reinhardt (2010).1

This more balanced view acknowledges that in a second best world, liberalizing only

some markets might be harmful. Especially, the build-up of persistent capital flow

imbalances in form of short-term debt, referred to as “hot money” increases the risk

of financial instability. To avoid sudden reversal it might be desirable to “manage”

capital flows.

We develop a formal framework that allows one to analyze capital account liber-

alization, capital controls and other partial restrictions. We identify inefficiencies and

instabilities that can arise from free debt capital flows. To this end we develop a dy-

namic two country, two good stochastic growth model in continuous time. The two

consumption goods and the single physical capital good can be freely traded. Like in

the classic Ricardian trade model, each country has some (comparative) advantage in

producing one good and hence should ideally specialize in producing that good. Our

model shows that in a world with less than perfect risk sharing (which can be justified

by information problems and moral hazard consideration) opening the capital account

can boost economic growth in normal times but the resulting build-up of global debt

imbalances can be excessive and threaten financial stability.

Not having access to the world debt market limits a country’s ability to build up

its capital stock (say after an adverse shock) and to produce goods for which it has

a comparative advantage. This limits economic growth in normal times. The lack of

access to financing does however have a favorable side-effect. By limiting output, the

country enjoys favorable terms of trade - the price of its output good is relatively high.

The lower the elasticity of substitution between the two output goods the larger is

1See also the policy recommendations in the report of the Committee on International Economic
Policy and Reform (2012).
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natural terms of trade hedge. As a country opens its current account, debt financing

enables each firm in the country to borrow and purchase more physical capital to

produce more. However, by doing so, firms in the country jointly erode the price of

their output good. Firms do not internalize this pecuniary externality which leads

to an overall welfare loss in the economy and an outcome that is not constrained

efficient. Moreover, increased leverage exposes firms in this country to further risk.

In other words, while debt financing allows firms in different countries to specialize in

their output goods for longer, it also increases the debtor firms’ exposure to additional

adverse shocks. For this reason there is in addition to the pecuniary externality in

output prices, a second pecuniary externality with regard to future input prices of

physical capital. When firms take on more leverage they become more exposed to

further bad shocks. After a severe shock or sequence of bad shocks indebted firms try to

reduce their debt level, cutting back their production scale by fire-selling their physical

capital to the firms in the other country. Partial irreversibility of physical capital

due to adjustment costs limit firms’ ability to revert capital goods into consumption

goods. Each firm in the country fully takes into account that it might have to fire-sell

physical capital should further adverse shocks occur. However, they ignore that their

actions as a group exacerbates this drop in value of physical capital. In a complete

markets setting these pecuniary externalities have only second order effects, but in an

incomplete markets setting they result in a constrained inefficient outcome. That is,

a social planner that is limited to distort firms actions within the same constrained

environment can increase overall welfare. Moreover, a simple wealth redistribution can

Pareto improving. For example, the inefficiency that results when creditor country

firms abandon specialization can be mitigated by an (unexpected) debt forgiveness

policy.

The market outcome is not only inefficient from a welfare perspective, it also leads

to high volatility and instability. Markets are only partially stabilizing and have some

destabilizing features. Free capital flows in form of debt are stabilizing only for small

shocks as they soften their impact, but the associated increased leverage of the firms

is destabilizing when firms face a sequence of adverse shocks or large shocks. Initially

short-term hot money flows into the debtor country seemingly offsetting the initial
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shocks, but they also make the country vulnerable to additional shocks. The initial

calm is treacherous. Firms continue investing in only partially reversible capital goods

and might suddenly face an outflow of the hot money. This leads to a sudden stop.

Overall, capital account liberalization enhances the expected growth of the economy

especially if the economy experiences only reasonably small shocks, but also introduces

risk of sudden stops. In a sense short-term debt acts as a palliative. As the global

imbalances build, things seem calm, prices of output and capital seem relatively stable.

With a bit of luck positive shocks follows and the strains on the global economy may

never be noticed. However, if another bad shock follows conditions deteriorate quickly.

Exchange rate swings can be wild depending on the denomination of debt. In sum, an

open capital account that allows the flow of short-term debt boosts economic growth

and welfare in normal times, but makes the global economy susceptible to financial

crisis. However, the latter can be controlled by avoiding excessive credit flows that

arise due to pecuniary externalities.

In times of crisis a sudden unanticipated introduction of capital controls that dilute

creditors’ debt claims can be Pareto improving. Each individual creditor would be

reluctant to sign on to this scheme, even though as a group all creditors are better off.

To understand why, note that creditors are also consumers in our setting. Consumers

benefit if the good is produced by the firms in countries that have the comparative

advantage producing it. Our analysis also provides an explanation for the so-called

“Phoenix miracle” a phenomenon that refers to the stylized fact that countries that

suffered from a sudden stop returned relatively quickly to their previous growth path.

It also explains why countries like Malaysia, which imposed capital controls, fared

relatively better during and after the South East Asia crisis in the late 1990s.

Related Literature. Relative to the existing literature our framework makes several

contributions. The model can be seen as a two country two good version of Brunner-

meier and Sannikov (2013, 2011), which build in turn on the seminal contributions of

Bernanke, Gertler, and Gilchrist (1999) and Kiyotaki and Moore (1997). Our paper

clearly identifies two important pecuniary externalities. The terms of trade exter-

nality only arises in a multiple goods setting. That pecuniary externalities lead to
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constrained inefficient outcome was first discussed in the general equilibrium literature

(Stiglitz (1982), Geanakoplos and Polemarchakis (1986)). Our analysis also highlights

that partially completing the market can lead to inferior outcomes, a result that was

shown in the GE literature by Hart (1975).

Pecuniary fire sale externalities are the subject of extensive study in finance and

international economics. In most models inefficiencies arise because the price move

tightens an exogenously imposed collateral constraint, see e.g. Caballero and Krishna-

murthy (2004). In Aoki, Benigno, and Kiyotaki (2009) collateral debt limits are lower

for international lending than domestic lending arrangements.2 In Bianchi (2011) and

Mendoza (2010) and this constraint binds only occasionally potentially leading to sud-

den stops. Jeanne and Korinek (2011) proposes a Pigouvian tax to correct for the

externality. In contrast, we do not impose any exogenous debt constraint. In our

setting a sudden decline in debt arises endogenously due to the incomplete markets

setting, as firms are limited in issuing equity claims. Costinot, Lorenzoni, and Wern-

ing (2012) derive the optimal capital flow tax for a country that tries to manipulate

the terms in trade in order to extract monopoly rents from the other countries.

Our framework is general enough that it can have quantitative implications after

some calibration. In this sense our model is closer to canonical international RBC

model with capital formation as in Backus, Kehoe, and Kydland (1994). However,

unlike Backus, Kehoe, and Kydland (1994) we consider an incomplete market setting.

Hence, we cannot use the canonical macroeconomic approach of solving the planners’

problem and then decentralizing the (global) economy. Like Obstfeld and Rogoff (1995)

New Keynesian framework, we focus on short-term international debt. However, since

our methodology does not restrict us to the log-linearization technique, we can also

study crisis events far away from the steady-state.

The terms of trade hedge is related to the seminal paper by Cole and Obstfeld

(1991) and can be traced back to the debate between Keynes (1929) and Ohlin (1929).

We gain additional insights by varying the elasticity of substitution across both goods.

In addition, we show that capital irreversibility requires an even greater hedge than

2In Maggiori (2013) countries differ in their financial developments rather than in producing dif-
ferent goods.
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provided by a Cobb Douglas elasticity of substitution. Like our paper, Heathcote and

Perri (2013) also allows for endogenous capital formation. The focus of their analysis is

to replicate empirical patterns identified in the international business cycles literature.

Since all the debt financing is short-term, our analysis also speaks to hot money in

international capital flow and the fear of losing control of monetary policy by the

monetary authority.

Empirical evidence about the effects of capital account liberalizations are mixed.

See e.g. Obstfeld and Taylor (2004) or Magud, Reinhart, and Rogoff (2011). There are

several examples where capital account liberalizations spurred growth but also other

where it led to subsequent crises. Prominent examples are the Scandinavian crisis in

the early 1990s the South East Asia crisis in the late 1990s. The terms sudden stop and

Phoenix miracle were coined and empirically documented in Calvo (1998) and Calvo

(2006).

2 The Model

In this section we develop a simple baseline model of a global economy that is popu-

lated by agents who live in two different countries, A and B. Both types of agents have

the same preferences and can own capital. They can also both produce the two con-

sumption goods a and b. Like in the classical Ricardian trade model agents in country

A have a comparative advantage in producing product a, while agents in country B

are better at producing good b. There are no trade barriers for the two output goods a

and b as well as for the input good, physical capital. We focus on frictions in the inter-

national finance markets. In particular we contrast a global economy in which capital

account is closed with a world in which the current account is open for short-term debt

instruments. We also derive the benchmark outcome for the case when all contingent

claims can be traded.

Technology. Capital can be used to produce goods a or b, which can be combined

to produce the aggregate good. The aggregate good can be consumed, or used for

investment to produce new capital.
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When quantities ya and yb of goods a and b are combined, they make a total

quantity

y =

[
1

2
(ya)

s−1
s +

1

2
(yb)

s−1
s

] s
s−1

, (1)

of the aggregate good. For s = ∞ both goods are perfect substitutes, for s = 0 there

is no substitutability á la Leontieff, while for s = 1 the substitutabililty corresponds

to the one of a Cobb-Douglas utility function. The index/aggregate good serves as

numeraire and its price is normalized to one.

Agents in country A are better at producing good a, while agents in country B are

better at producing b. From kt units of capital, an agent in country A can produce

good a at rate akt and good b at rate of only akt, where a > a ≥ 0. Symmetrically, an

individual in country B can produce good b at rate akt and good a at rate only akt.

We denote the aggregate amount of world capital at time t ∈ [0,∞) by Kt. Denote

the fraction of world capital is used by agents in country A to produce good a by ψAat ,

the fraction used by agents in country B to produce good b by ψBbt , etc., so that

ψAat + ψAbt + ψBat + ψBbt = 1.

Then the total world supply of goods a and b is given by

Y a
t = (ψAat a+ ψBat a)Kt and Y b

t = (ψBbt a+ ψAbt a)Kt, (2)

respectively. Then the total supply of the aggregate good is, naturally,

Yt =

[
1

2
(Y a

t )
s−1
s +

1

2
(Y b

t )
s−1
s

] s
s−1

, (3)

and the prices of goods a and b in terms of the numeraire/aggregate good are

P a
t =

1

2

(
Yt
Y a
t

)1/s

and P b
t =

1

2

(
Yt
Y b
t

)1/s

. (4)

Capital is subject to shocks, which depend on the technology in which the capital

is employed. Also, new capital can be built through internal investment by using the
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aggregate good. Overall, capital employed to produce good i = a, b evolves according

to
dkt
kt

= (Φ(ιt)− δ) dt+ σi dZi
t , (5)

where ιt is the investment rate of the output good index per unit of capital (i.e., ιtkt is

the total investment rate). Function Φ, which satisfies Φ(0) = 0, Φ′(0) = 1, Φ′(·) > 0,

and Φ′′(·) < 0, represents a standard investment technology with adjustment costs.

In the absence of investment, capital managed by experts depreciates at rate δ. The

concavity of Φ(ι) represents technological illiquidity, i.e., adjustment costs of converting

output to new capital and vice versa.

The two independent Brownian shocks dZa
t , dZ

b
t are exogenous shocks to the pro-

duction technologies. Capital devoted to producing output good a is shocked by dZa
t ,

while capital devoted to producing good b is shocked by dZb
t .

Preferences. All agents in the world have identical risk and intertermporal prefer-

ences represented by the expected utility function

E

[∫ ∞
0

e−ρt
c1−γt

1− γ
dt

]
,

where ct is the individual consumption of the aggregate good.

The parameter γ is the constant relative risk aversion coefficient and the inverse of

the constant elasticity of intertemporal substitution. For the case of γ = 1, the utility

function is given by log c, and this case has particular tractability. The preference

discount rate is given by ρ.

Markets for Physical Capital and the Risk-Free Bond. Individual experts and

households can trade physical capital in a fully liquid international market. We denote

the equilibrium market price of capital per unit (in terms of the aggregate output good)

by qt and postulate that its law of motion is of the form

dqt
qt

= µqt dt+ σqat dZa
t + σqbt dZb

t . (6)
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That is, capital kt is worth qtkt.

Absent capital controls there is also an international market for the risk-free bond,

which is in zero net supply. Agents can go long (lend) or short (borrow) in the risk-free

asset. The return on the risk-free asset is denoted by drFt . In equilibrium both qt and

drFt are determined endogenously.

Returns from Holding Physical Capital. The returns from capital depends on

the identity of the agent who holds it and the technology that it is employed for. The

capital gains from capital are given by d(qtkt)/(qtkt), where kt and qt evolve as (5)

and (6). The dividend yield from capital is given by (aP i
t − ιt)/qt when it is used

productively to produce good i = a, b, and by (aP i
t − ιt)/qt when it is employed by the

agent to produce the good, to which the agent does not have a comparative advantage.

Therefore, when an agent of type A uses capital to produce good a, he earns the return

of

drAat =

(
aP a

t − ιt
qt

+ µqt + Φ(ιt)− δ + σaσqat

)
dt+ (σa + σqat ) dZa

t + σqbt dZb
t ,

where we used Ito’s lemma to compute the capital gains portion of the return, d(qtkt)/(qtkt).

The Ito-term σaσqat reflects the covariance between exogenous volatility of capital stock

a and the endogenous q risk price exposure. When agent A uses capital to produce

good b, he earns

drAbt =

(
aP b

t − ιt
qt

+ µqt + Φ(ιt)− δ + σbσqbt

)
dt+ σqat dZa

t + (σb + σqbt ) dZb
t ,

etc. The optimal investment rate, which maximizes returns, is always given by the

first-order condition Φ′(ι) = 1/qt.

Financial Frictions and Capital Structure. There are financial frictions in this

economy. We assume that absent capital controls agents can borrow through risk-free

debt to buy capital, but cannot share risk of the capital they employ by issuing equity

or through other means. A constraint on expert equity issuance can be justified in

many ways, e.g., through the existence of an agency problem between the experts and
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households. There is an extensive literature in corporate finance that argues that firm

insiders must have some “skin in the game” to align their incentives with those of the

outside equity holders.3 Typically, agency models imply that the expert’s incentives

and effort increase along with the equity stake. The incentives peak when the expert

owns the entire equity stake and borrows from outside investors exclusively through

risk-free debt. For tractability, we make the extreme assumption that agents cannot

issue any outside equity.

Each agent chooses his consumption rate, as well as the allocation of wealth to

capital used to produce each good and to the risk-free asset. When agent I = A,B

consumes at rate ζIt > 0 and chooses to portfolio weights (xat , x
b
t , 1− xat − xbt), his net

worth nt evolves according to

dnt
nt

= xat dr
Ia
t + xbt dr

Ib
t + (1− xat − xbt) drFt − ζIt dt. (7)

Equation (7) (together with the solvency constraint nt ≥ 0) can be thought of as the

agent’s budget constraint. Portfolio weights xat and xbt must be nonnegative for all

agents.

Definition. An equilibrium is a map from any initial allocation of wealth as well

as histories of shocks {Za
s , Z

b
s , s ∈ [0, t]} to the allocation of capital (ψAat , ψAbt , ψ

Ba
t , ψBbt )

and consumption goods (CA
t , C

B
t ) as well as prices qt and dr

F
t such that

1. all agents solve their optimal consumption and portfolio choice problems, subject

to the budget constraints and

2. all markets clear, i.e.4

ψAat + ψAbt + ψBat + ψBbt = 1 and CA
t + CB

t = Yt − ιtKt. (8)

We denote the net worth of agents in country A at time t by Nt and the net worth

3See Jensen and Meckling (1976), Bolton and Scharfstein (1990), and DeMarzo and Sannikov
(2006).

4If the markets for capital and aggregate output clear, then the market for the risk-free asset clears
automatically by the Walras’ Law.
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share (wealth share) of agents of country A, by ηt ≡ Nt/(qtKt). Then the portfolio

weights of representative agent A are given by(
ψAat
ηt

,
ψAbt
ηt
, 1− ψAat + ψAbt

ηt

)
,

and consumption rate, by ζAt = CA
t /Nt. Likewise, for agents B, these are given by(

ψBat
1− ηt

,
ψBbt

1− ηt
, 1− ψBat + ψBbt

1− ηt

)
and ζBt =

CB
t

qtKt −Nt

.

Asset-pricing equations. Here, we take a technical detour to summarize equations

that price available assets from the agent’s consumption processes. If the consumption

of representative agent A follows

dCA
t

CA
t

= µAt dt+ σAat dZa
t + σAbt dZb

t ,

then marginal utility C−γt follows

(dCA
t )−γ

(CA
t )−γ

=

(
−γµAt +

γ(γ + 1)

2
((σAat )2 + (σAbt )2)

)
︸ ︷︷ ︸

MA
t ≡

dt− γσAat dZa
t − γσAbt dZb

t .

This process can be used to write down the pricing conditions for any asset held by

agents A. Specifically, for capital used to produce output a,

MA
t − ρ+

E[drAat ]

dt
−γσAat (σa + σqat )− γσAbt σ

qb
t︸ ︷︷ ︸

Cov [ drAat , d(CAt )−γ/(CAt )−γ ]

= 0. (9)

Likewise, for capital used to produce good b,

MA
t − ρ+

E[drAbt ]

dt
−γσAat σqat − γσAbt (σb + σqbt )︸ ︷︷ ︸

Cov [ drAat , d(CAt )−γ/(CAt )−γ ]

≤ 0, (10)
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with equality if agents A devote a positive amount of capital to produce good b, i.e.

ψAbt > 0. Finally, the asset-pricing condition for the risk-free asset is

−γµAt +
γ(γ + 1)

2
((σAat )2 + (σAbt )2)− ρ+

drFt
dt

= 0. (11)

Similar equations also hold for agents B.

First-best Benchmark. In the economy without frictions and complete markets

full specialization realizes. Agents A specialize in producing only output good a and

agents B only produce output good b. With the efficient allocation of capital to the

production of two goods, ψAat = ψBbt = 1/2 and ψAbt = ψBat = 0. The total aggregate

good

Yt =
aKt

2

is divided between the two groups of agents according to their fixed Pareto weights

(λ, 1− λ). For simplicity, we assume a symmetric economy, in which σa = σb = σ.

With complete markets agents would fully share the risks dZa
t and dZb

t . The price

of capital and the risk-free rate are given by the following proposition.

Proposition 1 With complete markets, the market outcome leads to the first best al-

location with full specialization, ψAat = ψBbt = 1/2, and output and investment rate

levels are the same across both countries. The risk-free rate and the price of capital in

a complete-market economy are time-invariant and given by

rF = ρ+ γ(Φ(ι)− δ)− γ(γ + 1)σ2

4
and q =

a/2− ι
rF + γσ2/2− Φ(ι) + δ

. (12)

Proof. See Appendix A.

The risk-free rate is determined by the time-preference rate, the growth rate of

capital and a covariance risk term. The price of capital is given by the Gordon growth

formula, where the denominator is given by the risk-free rate plus a risk premium term

minus the growth rate of capital.
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3 Closed Capital Account

Let us now consider the case in which the capital account is closed. Agents in the

economy cannot tap in the international debt market and cannot borrow. Then asset-

pricing conditions (9) and (10) hold, but (11) becomes irrelevant since there is no

risk-free asset.

The following proposition characterizes a procedure to compute equilibrium under

the assumptions of logarithmic utility.

Proposition 2 Suppose that all agents have logarithmic utility (γ = 1). Then the state

space is divided into three regions. In the middle region, η ∈
[
ηψ, 1− ηψ

]
, all agents

engage only in their most productive technology (full specialization), i.e. ψAat = ηt,

ψBbt = 1− ηt and ψBat = ψAbt = 0, and the price of capital qt satisfies

[
1

2
(aη)

s−1
s +

1

2
(a(1− η))

s−1
s

] s
s−1

− ι(q(η)) = ρq(η). (13)

In the region [0, ηψ), in which agents of country B use capital to produce good a, the

price of capital and the production of agents B are determined jointly by the equations

aP b − aP a

σ2q(η)
=

2ψBb

1− η
− 1 and, (14)

[
1

2
(aη + a(1− η − ψBb))

s−1
s +

1

2
(aψBb)

s−1
s

] s
s−1

− ι(q(η)) = ρq(η). (15)

At point ηψ, ψBb reaches 1− ηt and q(η) reaches the level defined by (13). The law of

motion of ηt over the entire range [0, 1− ηψ) is given by

dηt
ηt

=

(
aP a

t − ιt
qt

+ ψBb(2ψBb − 1)σ2 − ρ
)
dt+ ψBbσ dZa

t − ψBbσ dZb
t . (16)

The region (1− ηψ, 1], where agents A produce good b, is determined symmetrically

to the region [0, ηψ).

Proof. See Appendix B.
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Figure 1: Panel A plots the capital shares ψAa and ψBa, Panel B plots the terms of
trade P a/P b and Panel C plots the price of physical capital q for three different
levels of elasticity of substitution: s = 0.5 in dash-dotted blue, s = 1.01 (Cobb-Douglas)
in solid black, and s = 3 in dashed red.

Numerical Example. Our formal results allow us to characterize the full stochastic

equilibrium dynamics of the global economy. For all numerical examples we assume

that all agents have log utility function, i.e. γ = 1 and the adjustment cost function

is given by Φ(i) = 1
κ

(√
1 + 2κi− 1

)
with κ = 2.5 We fix σa = σb = 0.1, a = 0.14,

a = 0.04, δ = 0.05, κ = 2, ρ = 0.05 and vary the elasticity of substitution s ∈
{0.5, 1, 3}. Note that due to the symmetry of our setting it is sufficient to characterize

the equilibrium for the wealth share η ∈ [0, 0.5]. For η ∈ (0.5, 1] all functions of η are

the mirror image.

Panel A of Figure 1 plots the capital share. Recall, the first best solution of complete

markets resulted in full specialization with constant capital share of ψAa = 0.5 and

full insurance with a constant wealth share of η = 0.5. Capital controls modify this

outcome. As long as η ≤ 0.5 agents in country A still put all their wealth into producing

output good a. However, as their wealth share declines, so does their capital share.

That is, ψAa is given by the 45-degree line, i.e. ψAa = η and their capital share equals

their wealth share. This is the case independent of the elasticity of substitution s

5The investment technology in this example has quadratic adjustment costs: An investment of
Φ + κ

2Φ generates new capital at rate Φ.
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Figure 2: Panel A plots the stationary distribution, Panel B the drift and Panel C
the volatility of wealth shares η for three different levels of elasticity of substitution:
s = 0.5 in dash-dotted blue, s = 1.01 (Cobb-Douglas) in solid black, and s = 3 in
dashed red.

between both output goods. The three decreasing lines ψBa depict how much capital

agent B devotes to producing output good a as a fraction of global capital Kt for

different elasticities of substitutions s. The solid black line captures the case of Cobb

Douglas aggregation, i.e. s = 1, the dash-dotted blue line the case of s = 0.5 and the

dashed red line covers the case of s = 3. For η values sufficiently close to 0.5, ψBa = 0.

The declining lines cross the x-axis at the point ηψ.

Panel B of Figure 1 plots the terms of trade, i.e. the price ratio P a/P b. The figure

shows clearly the “terms of trade hedge.” As agents A’s wealth share drops after a

negative shock, its output good a becomes more scarce. Consequently, the price of this

good rises and agent A’s terms of trade improve. The improvement in the terms of

trade increases as both output goods become worse substitutes, i.e. for decreasing s.

Panel C of Figure 1 shows the price of physical capital q for the three different cases

of elasticity of substitutions. Recall that the reinvestment rate per unit of capital ι is

directly related to the price of capital q, through the first order condition Φ′(ι) = 1/qt.

A higher capital price q translates in a higher investment rate.

Figure 2 fully characterizes the stochastic dynamics of the state variable, agent A’s

wealth share, η. Panel A plots the stationary distribution for η ∈ [0, 0.5). Two features
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stand out. First, lower output good substitutability leads to a tighter distribution of

wealth shares. The power of the “terms of trade hedge” decreases with the elasticity of

substitution s. Recall that the first best complete market solution implies a stationary

distribution that is concentrated at η = 0.5. Second, unlike in Cole and Obstfeld (1991)

the Cobb-Douglas case does not lead to full insurance nor to the first best outcome

in our setting. What explains this difference? In our production economy an adverse

shock destroys part of agents A’s capital stock. Hence, the terms of trade have to hedge

(i) agents A’s loss in wealth devoted to consumption and (ii) agents A’s loss to replace

the capital stock. Cole and Obstefeld’s analysis does not include the latter aspect.

Therefore, their conclusion that they have resolved the “international diversification

puzzle” is not true for our production economy setting.

Macroeconomists typically represent the stochastic dynamics of an economy with

impulse response functions. However, impulse response functions only plot the ex-

pected response of a variable from a specific starting point (e.g. the steady state).

The drift and volatility of the state variable, depicted in Panel B and C of Figure

2 allows a full characterization of the dynamical system, independent of the starting

point. The drift of η (Panel B) reveals that the system has a basin of attraction at

η = 0.5. Whenever the system falls below η = 0.5, the positive drift pushes it back

towards η = 0.5. Similarly, for η > 0.5, the system drifts back to η = 0.5 as the drift

is negative in the range η ∈ (0.5, 1). Panel C depicts the volatility σaηη and σbηη.

Figure 3 plots the frontier of value functions for agents in country A on the x-axis

and for agents in country B on the y-axis. The outer frontier, given by the pink dotted

curve, depicts the first best outcomes that arise as equilibrium outcome under complete

markets. The values themselves turn out to be negative, which is not surprising given

that the value functions are of the log form like the utility function. Recall, under

first best the starting wealth share stays constant and determines Pareto weight of

agents in country A and the point on the pink outer frontier. The frontier is also the

Pareto frontier as one moves along the frontier agents A’s value increases only when

agents B’s value declines. The other three “frontiers” cover the case of capital controls

for different elasticity of substitutions. Surprisingly, a lower elasticity of substitutions

shrinks the frontier payoffs for most η values, even though the “terms of trade hedge”
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Figure 3: Welfare frontier for agents in country A (x-axis) and agents in country B
(y-axis) for the first-best solution given by the dotted pink curve and for the economy
with capital controls for three different levels of elasticity of substitution: s = 0.5 in
dash-dotted blue, s = 1.01 (Cobb-Douglas) in solid black, and s = 3 in dashed red.

is more powerful. The figure reveals another interesting fact, the frontiers are inward

bending for low enough s and hence are not necessarily Pareto frontiers, a phenomenon

we will focus on in greater detail in the following section.

4 Open Capital Account for Debt

In this section, we discuss the equilibrium in an economy, in which agents in both

countries can borrow through risk-free debt to buy capital. Due to incentive constraints

they still cannot issue equity. Relative to the benchmark without the international

debt market, agents do not have to cut back on production following negative shocks

to their net worth. They can maintain their production level by borrowing.6 This

has several effects. On one hand, efficiency is temporarily improved. On the other

hand, the undercapitalized sector has greater risk exposure and benefits less from

the terms of trade hedge (i.e. the price of its good rises to a lesser extent when it

becomes undercapitalized). The combination of these factors increases the chance that

the constrained sector becomes severely undercapitalized. We find that these extreme

6In equilibrium, agents will choose to cut down their production slowly after negative shocks, in
order to manage risks.
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regimes are Pareto inferior. That is, the overcapitalized sector can improve its welfare

by forgiving some debt from the undercapitalized sector.

Technically, the equilibrium with debt is characterized by the asset pricing equations

(9), (10) and (11) for agents of type A, together with analogous equations for agents of

type B, the market-clearing conditions (8) and equations (2), (3) and (4) that determine

output and prices. We use these equations, together with the law of motion of ηt given

by Proposition 3, to solve for the equilibrium quantities as functions of the wealth

allocation, summarized by ηt.

Proposition 3 The law of motion of ηt is given by

dηt
ηt

= γ
1− ηt
ηt

(
ψAat σaσAa + ψAbt σ

bσAb + (ψAat + ψAbt )(σqat σ
Aa
t + σqbt σ

Ab
t )
)
dt

−γ
(
ψBat σaσBat + ψBbt σbσBbt + (ψBat + ψBbt )(σqat σ

Ba
t + σqbt σ

Bb
t )
)
dt+

Yt − ιKt

qtKt

dt

−Ct
Nt

dt−
(

((ψAat + ψBat )σa + σqat )σηa + (σqbt + (ψAbt + ψBbt )σb)σηb
)
dt

+

((
ψAat
ηt
− ψAat − ψBat

)
σa +

ψAat + ψAbt − ηt
ηt

σqat

)
︸ ︷︷ ︸

σηa

dZa
t

+

((
ψAbt
η
− ψAbt − ψBbt

)
σb +

ψAat + ψAbt − ηt
ηt

σqbt

)
︸ ︷︷ ︸

σηb

dZb
t . (17)

Proof. See Appendix C.

We can use equation (17) to evaluate the volatilities of η and q from the capital

allocation vector (ψAat , ψAbt , ψ
Ba
t , ψBbt ) and the values of q(η) and q′(η). Indeed, using

Ito’s lemma,

σqat =
q′(η)

q(η)

((
ψAat − ηt(ψAat + ψBat )

)
σa + (ψAat + ψAbt − ηt)σ

qa
t

)︸ ︷︷ ︸
σηat η

⇒
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σηat η =
ψAat − ηt(ψAat + ψBat )

1− q′(η)
q(η)

(ψAat + ψAbt − ηt)
σa, σqat =

q′(η)

q(η)
σηat η.

For the special case of logarithmic utility, we can also explicitly evaluate the drift of

η. Indeed, since the consumption of all agents is proportionate to their net worth, we

have

σAat =
ψAat
ηt

σa +
ψAat + ψAbt

ηt
σqat , σAbt =

ψAbt
ηt
σb +

ψAat + ψAbt
ηt

σqbt

σBat =
ψBat

1− ηt
σa +

ψBat + ψBbt
1− ηt

σqat and σBbt =
ψBbt

1− ηt
σb +

ψBat + ψBbt
1− ηt

σqbt

We can use these expressions in (17) directly.

We can combine the law of motion of η together with the equilibrium conditions

(9), (10) and (11) for agents of type A, their equivalents for agents B, and the market-

clearing conditions (8) to compute equilibrium dynamics and welfare. We outline the

numerical procedure that we employ in Appendix . . . . For the case of logarithmic

utility, the market-clearing condition for output takes the form

ρqt =

[
1

2
(ψAat a+ ψBat a)

s−1
s +

1

2
(ψBbt a+ ψAbt a)

s−1
s

] s
s−1

− ι(qt). (18)

Equilibrium dynamics and Welfare. As before we illustrate our findings within a

specific numerical examples. To ease the comparison with the previous section we apply

the same parameter values. Instead of focusing on different levels of substitutions, in

this section we stress the difference between outcomes under an open and closed capital

account. Recall that we do not allow risk sharing for incentive reasons.

Panel A of Figure 4 shows the difference between a global economy with and without

capital controls. For equal wealth share, i.e. for η = 0.5, agents are in both cases fully

specialized. However, as η, the wealth share for A, declines agents A in the economy

with capital controls have to cut back their production. In contrast, with international

debt market agents in country A continue to produce a large scale. They can do so

since they can issue short-term debt to agents in country B. Panel A reveals that

ψAa is significantly higher in the case without capital controls (increasing red dashed

curve) than in the case with capital controls (black increasing 45-degree line). In short,
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Figure 4: Panel A, B and C constrast the capital shares ψAa and ψBa, the terms
of trade P a/P b and the price of physical capital q of an economy with and with-
out capital controls (black solid versus red dashed curves) assuming an elasticity of
substitution of s = 1.01 (close to Cobb-Douglas).

specialization can be maintained for a much larger range of η-values. Agents in country

B start producing the output good a only for much smaller η values. The contrast

between the two ψBas lines, the declining red dashed cuve for the case open capital

accounts and the black line for capital control economy is striking.

Panel B shows the difference in the terms of trade, the relative price ratio P a/P b.

Without capital controls each agent in country A borrows in order to hold a larger

fraction of the global physical capital stock, resulting in greater output of good a.

This ruins the terms of trade improvement that would occur with capital controls. A

pecuniary externality arises.Each individual agent ignores the effect of his production

on his fellow countrymen; by borrowing and operating at a larger scale, output increases

and the price appreciates less. Easier debt financing also pushes up the price of physical

capital q as shown in Panel C of Figure 4.

Overall, debt financing increases specialization, it leads to better allocation of re-

sources and boosts economic growth in normal times. However, it comes at the price of

reduced economic stability. Panel A of Figure 5 shows this. The stationary distribution

of the wealth share is more fat tailed without capital controls. Panel C explains why.

The volatility with an open capital account is now much higher for low and mid-range
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Figure 5: Panel A plots the stationary distribution, Panel B the drift and Panel
C the volatility of wealth shares η for the global economy with capital controls
(black solid curves) and without capital controls (red dashed curves) for an elasticity
of substitution coefficient of s = 1.01.

η-values.

The examination of the value frontier is most interesting. As in Figure 3 the

pink dotted outer frontier represent the first best outcomes. The inner frontier curve

corresponds to the case of capital controls with s = 1 identical to Figure 3. The red

dashed line in between is the frontier without capital controls. Interestingly, the frontier

is inward bending. That is, for low enough values of η an unanticipated wealth transfer

from agents in country B to agents in country A can make both types of agents better

off. In other words, an unexpected bailout of or debt relief for agents A can be a Pareto

improvement. (By symmetry, the reverse transfer can lead to Pareto improvement for

high enough starting η.) This may be less surprising, after one takes into account

that two forms of pecuniary externalities operate in the absense of capital controls.

To test the importance of the “terms of trade externality” we lower the elasticity of

substitution between both output goods to s = 0.5. In this case, the “terms of trade

hedge” would be more pronounced, but is collectively undermined by agents in country

A since debt financing allows them to keep their output ratio relatively high.
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Figure 6: Welfare frontier for agents in country A (x-axis) and agents in country B (y-
axis) for the first-best solution (pink dotted frontier) and for the economy with capital
controls (inner black solid frontier). The middle curves depict the value frontier for a
global economy without capital controls and an elasticity of substitution of s = 1.01
(red dashed curve) and of s = 0.5 (blue dashed curve).

5 Conclusion

Magud, Reinhart, and Rogoff (2011) complain about the lack of a unified theoretical

framework to analyze the macroeconomic consequences of capital controls. This pa-

per provides such a framework that is general enough that it can be calibrated and

quantitative implications can be derived. It clearly identifies two pecuniary external-

ities. The first externality only arises in a multiple good setting and undermines the

natural terms of trade hedge stressed in Cole and Obstfeld (1991). The second ex-

ternality arises in a multiple period setting and is related to the fire-sale externality.

Open current accounts that primarily lead to short-term debt financing also lead to

a constrained inefficient outcome in terms of welfare and to a highly volatile market

in terms of financial stability. Interestingly, in times of a crisis, unanticipated bail-out

arrangements in favor of the debtor countries can be Pareto improving. That is the

consumers in the creditor country also benefit from the bailout even if they have to pay

for it. Our framework can form the basis to analyze numerous other policy measures.
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Appendix

A Proof of Proposition 1: First Best Analysis

Social Planner’s Problem

Under complete market and no frictions, agents would fully share the risks dZA
t and

dZB
t , and the equilibrium allocation solves a planner’s problem, where welfare weights

λA and 1− λA depend on relative initial wealth of agents in country A and B:

V (K0) = max
ct,kAt ,k

B
t ,,yt,ιt,ψt,Yt

E0

[∫ ∞
0

e−ρt
[
λAU(cAt ) + (1− λA)U(cBt )

]
dt

]
subject to: cAt +cBt + ιAt k

A
t + ιBt k

B
t = Yt,

kAt + kBt =Kt, kAt ≥ 0, kBt ≥ 0,

ya,At =aψAt k
A
t ,

yb,At =a(1− ψAt )kAt , (P1)

ya,Bt =a(1− ψBt )kBt ,

yb,Bt =aψBt k
B
t ,

Yt =

[
1

2

(
ya,At + ya,Bt

) s−1
s

+
1

2

(
yb,At + yb,Bt

) s−1
s

] s
s−1

,

dKt =[Φ(ιAt )− δ]kAt dt+ σkAt ψ
A
t dZ

a
t + σkAt (1− ψAt )dZb

t

+[Φ(ιBt )− δ]kBt dt+ σkBt (1− ψBt )dZa
t + σkBt ψ

B
t dZ

b
t

The social planner will choose full specialization (ψAt = ψBt = 1). Since marginal

cost of goods a and b are identical (a times shadow rent of capital), marginal product of

goods a and b in producing output-index Y must be the same. Write out the marginal

products to see that the social planner must also choose output equalization (yat =

ybt ) and input equalization (kAt = kBt = Kt
2

); and for minimizing capital adjustment

costs, investment rate equalization (ιAt = ιBt ). The aggregate production function

will be Yt = aKt/2. Let cAt ≡ ζAt Kt and cBt ≡ ζBt Kt. The social planner’s problem
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above reduces to:

V (K0) = max
ζAt ,ζ

B
t ≥0

E0

[∫ ∞
0

e−ρt
[
λAU(ζAt Kt) + (1− λA)U(ζBt Kt)

]
dt

]
subject to: dKt =

[
Φ(
a

2
− ζAt − ζBt )− δ

]
Ktdt+

σ√
2
Kt
dZa

t + dZb
t√

2
(P2)

Note that agents fully share the risks, the responses to Brownian shocks dZa
t and

dZb
t will symmetric, and we can aggregate them into a single standard Brownian shock

dZt = (dZa
t + dZb

t )/
√

2. The HJB equation for the planner’s problem is:

ρV (K) = max
ζA,ζB≥0

λAU(ζAK) + (1− λA)U(ζBK) + V KK
[
Φ(
a

2
− ζAt − ζBt )− δ

]
+

1

2
V KKK

2σ
2

2
(P3)

Solving for equilibrium total consumption rate ζ∗: We look at, in turn, the

CRRA utility case and the log utility case.

Case I (CRRA Utility): Look for solutions of the form: V (K) = AK1−γ

1−γ to

(P3). Then V KK = AK1−γ and V KKK
2 = −γAK1−γ. Plug into (P3), HJB under

this conjecture is:

ρA
K1−γ

1− γ
= max

ζA,ζB≥0

{
λA

(ζA)1−γ

1− γ
+ (1− λA)

(ζB)1−γ

1− γ
+ A

[
Φ(
a

2
− ζAt − ζBt )− δ

]
− γAσ2

4

}
K1−γ (P3’)

The terms in the bracket does not depend on K, which verifies the function form

for V . The first order conditions are:

(λA)
−1
γ (ζA) =

[
AΦ′(

a

2
− ζAt − ζBt )

]−1
γ
,

(1− λA)
−1
γ (ζB) =

[
AΦ′(

a

2
− ζAt − ζBt )

]−1
γ
.

Let total consumption rate be ζ∗ = ζA + ζB. Then:
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ζA =
(λA)

1
γ

(λA)
1
γ + (1− λA)

1
γ

· ζ∗, and ζB =
(1− λA)

1
γ

(λA)
1
γ + (1− λA)

1
γ

· ζ∗

The FOC becomes:

(ζ∗)−γ =
[
(λA)

1
γ + (1− λA)

1
γ

]−γ [
AΦ′(

a

2
− ζ∗)

]
[FOC]

which involves A and ζ∗. For given constant A, LHS of the above equation is

decreasing in the total consumption rate ζ∗ and RHS is increasing in ζ∗.

To find both A and ζ∗ we need one more equation. Plug λA(ζA)−γ = AΦ′ and

(1− λA)(ζB)−γ = AΦ′ into the HJB equation (P3’) to find:

ρA

1− γ
=

ζ∗

1− γ
AΦ′(

a

2
− ζ∗) + A

[
Φ(
a

2
− ζ∗)− δ

]
− γσ2A

4
[HJB’]

The A’s cancel out and the [HJB’] becomes a single variate equation in ζ∗, [HJB”]:

ρ

1− γ
=

ζ∗

1− γ
Φ′(

a

2
− ζ∗) +

[
Φ(
a

2
− ζ∗)− δ

]
− γσ2

4
[HJB”]

Importantly, the total consumption rate ζ∗ does not depend on Kt. For appropriate

functional form and parameters we can solve out ζ∗, the optimal total consumption

rate, using [HJB”].

Case II (Log Utility): Look for solutions of the form: V (K) = A log(K) + B.

Then V KK = A and V KKK
2 = −A. First order conditions for the HJB equation (P3)

are:
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λA

ζA
=AΦ′(

a

2
− ζAt − ζBt ),

1− λA

ζB
=AΦ′(

a

2
− ζAt − ζBt ).

Under log utility, consumption shares are proportional to welfare weights ( ζ
A

ζB
=

λA

1−λA
). Furthermore, since the ζ’s does not depend on K (scale invariance), coefficient

A equals ρ−1 and we verify the function form assumed on V .

Let ζ ≡ ζA + ζB, the optimal consumption rate ζ∗ is then pinned down by:

(ζ∗)−1 =
1

ρ
Φ′(

a

2
− ζ∗) [FOC(ζ∗)]

where the LHS is marginal utility in rates and the RHS is the marginal efficiency of

capital investment times the marginal value of capital (in rates). Importantly, ζ∗ does

not depend on Kt. The LHS is decreasing in ζ∗ from +∞ to 0 and the RHS is increasing

in ζ∗ from Φ′(a
2
) > 0 to Φ′(−∞). There uniquely exists a ζ∗ that solves the planner’s

problem. The individual consumption rates are ζA∗ = λAζ∗ and ζB∗ = (1−λA)ζ∗. The

value function V for the social planner’s problem is:

V (K) = ρ−1
[
log(ζ∗K) + λA log(λA) + (1− λA) log(1− λA)

]
+ρ−2

[
Φ(
a

2
− ζ∗)− δ

]
− σ2

4ρ2
.

Decentralization: Representative Agent Economy

The original problem (P1) and the planner’s problem (P2) is equivalent to a represen-

tative agent with utility function Ũ defined by

Ũ(ζK) ≡ max
ζA+ζB≤ζ

U(ζAt K) + (1− λA)U(ζBK)

facing the following problem:
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Ṽ R(K0) = max
ζ≥0

E0

[∫ ∞
0

e−ρt
[
Ũ(ζtKt)

]
dt

]
subject to: dKt =

[
Φ(
a

2
− ζt)− δ

]
Ktdt+

σ√
2
KtdZt (P4)

And the equilibrium stochastic discount factor is given by:

mt =
e−ρtŨ ′(ζ∗(Kt)Kt)

Ũ ′(ζ∗(K0)K0)

We will be able to price assets if we know the representative agent’s utility function

Ũ and the equilibrium total consumption rate ζ∗(K). Importantly, for both CRRA

and log utility, the representative agent inherits the utility function of the agents (i.e.

CRRA(γ) for CRRA(γ) and log for log)) and the optimal total consumption rate is

invariant to K, i.e. ζ∗(K) = ζ∗. The stochastic discount factor mt can then be

simplified:

mt = e−ρt
(
K0

Kt

)γ
(γ > 1→ CRRA utility; γ = 1→ log utility)

By Ito’s Lemma, the SDF mt evolves according to the law of motion:

dmt

mt

=

{
−ρ− γ

[
Φ(
a

2
− ζ∗)− δ

]
+
γ(γ + 1)σ2

4

}
dt− γσ√

2
dZt

The risk-free interest rate r is given by:

r = −E
[
dmt

mtdt

]
= ρ+ γ

[
Φ(
a

2
− ζ∗)− δ

]
− γ(γ + 1)σ2

4

And the price of capital should be constant since the economy is scale invariant and

in first best. Let dqt/qt = 0. Then

dqtKt

qtKt

=
[
Φ(
a

2
− ζt)− δ

]
dt+

σ√
2
dZt

The return process of investing in capital is:
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drKt =
ζ∗

qt
dt+

[
Φ(
a

2
− ζt)− δ

]
dt+

σ√
2
dZt

The following asset pricing relationship holds for capital: E[
drKt mt
mtdt

] = 0. Using Ito’s

Lemma, we get:

0 = µmt + µr
K

t + σr
K

t σmt

⇒ r =
ζ∗

qt
+
[
Φ(
a

2
− ζt)− δ

]
+

σ√
2
∗
(
− γσ√

2

)
Hence the first best price of capital qt is:

qt =
ζ∗

r + γ
2
σ2 −

[
Φ(a

2
− ζ∗)− δ

]
It is worth noting that the price of capital qt in the first best follows Gordon’s growth

formula, where r is the interest rate, γ
2
σ2 is a risk premium, and

[
Φ(a

2
− ζ∗)− δ

]
is the

growth rate.

For a specific investment technology Φ(i) = 1
κ

(√
1 + 2κi− 1

)
, parameter values

a = 0.14, δ = 0.05, κ = 2, ρ = 0.05 and log utility, we calculate the first best interest

rate and price of capital. Plug the specifications into [FOC(ζ∗)] in the log utility

discussion above, we calculate the optimal total consumption rate to be ζ∗ = 0.16.7

The first best interest rate is r = −0.1− σ2.

B Proof of Proposition 2

Proof. Agents with logarithmic utility consume at rate of ρ times their net worth.

Thus, equations (13) and (15) follow from the market-clearing condition for output.

7x−1 = ρ−1Φ′(a2 − x) and Φ′(ι) =
[
2κ
√

1 + 2κι
]−1 ⇒ x2

4ρ2κ2 + 2κx − aκ − 1 = 0. With given

parameters ⇒ 25x2 + 4x− 1.28 = 0. The positive root x = 0.16 is the optimal total consumption rate
ζ∗.
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Next, from the pricing conditions for capital held by agents B (see (9) and (10)),

aP b − aP a

qt
+ σσqb − σσqa − γσBbt σ + γσBat σ = 0. (19)

Since consumption is proportional to net worth, the volatility of consumption equals

to that of net worth. The net worth of agents B follows

dNB
t

NB
t

=
ψBbt

1− ηt
drBbt +

1− ηt − ψBbt
1− ηt

drBat −
CB
t

NB
t

dt.

Therefore, in the region [0, 1− ηψ),

σBbt =
ψBbt

1− ηt
σ + σqbt and σBat =

1− ηt − ψBbt
1− ηt

σ + σqat . (20)

Combining this with (21) and setting γ = 1, we obtain

aP b − aP a

qt
+

1− ηt − 2ψBbt
1− ηt

σ2 = 0, (21)

which is equivalent to (14).

Finally, we need to derive the law of motion of ηt. The net worth of agents A on

[0, ηb) follows

dNA
t

NA
t

=

(
aP a

t − ιt
qt

+ µqt + Φ(ιt)− δ + σσqat

)
dt+ (σ + σqat )dZa

t + σqbt dZ
b
t︸ ︷︷ ︸

drAat

−ρ dt.

The aggregate net worth of all agents follows

(
µqt + Φ(ιt)− δ + (1− ψBb)σσqa + ψBbσσqb

)
dt

+((1− ψBb)σ + σqat ) dZa
t + (ψBbσ + σqbt ) dZb

t .

Therefore, using Ito’s lemma, the volatility of η is given by σηat = ψBbσ, σηbt = −ψBbσ.
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Likewise, the drift of ηt is

aP a
t − ιt
qt

+ µqt + Φ(ιt)− δ + σσqat − ρ−
(
µqt + Φ(ιt)− δ + (1− ψBb)σσqa + ψBbσσqb

)
−(σ+ σqat )((1−ψBb)σ+ σqat )− σqbt (ψBbσ+ σqbt ) + ((1−ψBb)σ+ σqat )2 + (ψBbσ+ σqbt )2,

which leads to (16) after simplifications.

C Proof of Proposition 3

Proof. Combining equations (9) with (11), we find that the return that agents A earn

from technology a, over the risk-free rate, is

(γσAat (σa + σqat ) + γσAbt σ
qb
t ) dt+ (σa + σqat ) dZa

t + σqbt dZb
t .

Combining equations (10) with (11), the return from technology b over the risk-free

rate, if ψAbt > 0, is

(γσAat σqat + γσAbt (σb + σqbt )) dt+ σqat dZa
t + (σb + σqbt ) dZb

t .

With portfolio weights ψAat /ηt and ψAbt /ηt on the two technologies, the law of motion

of the net worth of agents A is

dNt

Nt

= γ

(
ψAat
ηt

(σAat (σa + σqat ) + σAbt σ
qb
t ) +

ψAbt
ηt

(σAat σqat + σAbt (σb + σqbt ))

)
dt

+drFt −
Ct
Nt

dt+

(
ψAat
ηt

σa +
ψAat + ψAbt

ηt
σqat

)
dZa

t +

(
ψAbt
ηt
σb +

ψAat + ψAbt
ηt

σqbt

)
dZb

t .

The law of motion of aggregate wealth can be found by computing the return on

the aggregate portfolio of capital, and subtracting the dividend yield, i.e.

d(qtKt)

(qtKt)
= γψAat

(
(σa + σqat )σAat + σqbt σ

Ab
t

)
dt+ γψAbt

(
σqat σ

Aa
t + (σb + σqbt )σAbt

)
dt
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+γψBat

(
(σa + σqat )σBat + σqbt σ

Bb
t

)
dt+ γψBbt

(
σqat σ

Ba
t + (σb + σqbt )σBbt

)
dt+ drFt

−Yt − ιtKt

qtKt

dt+ ((ψAat + ψBat )σa + σqat ) dZa
t + ((ψAbt + ψBbt )σb + σqbt ) dZb

t .

It may appear strange that we derived this expression by subtracting dividend yield

from the return on the world portfolio, instead of by multiplying the laws of motion of

q and K. The benefit of this approach is that it allows us to express the law of motion

of ηt without using µqt and rFt . Thus, the law of motion of η that we obtain in the end

can be computed purely from the first derivatives of q, CA and CB (without second

derivatives).

Using Ito’s lemma,

dηt
ηt

=
dNt

Nt

− d(qtKt)

(qtKt)
−
(
ψAat
ηt

σa +
ψAat + ψAbt

ηt
σqat

)
((ψAat + ψBat )σa + σqat ) dt

−
(
ψAbt
ηt
σb +

ψAat + ψAbt
ηt

σqbt

)
((ψAbt + ψBbt )σb + σqbt ) dt

+((ψAat + ψBat )σa + σqat )2 dt+ ((ψAbt + ψBbt )σb + σqbt )2 dt =

γ
1− ηt
ηt

(
ψAat (σAat (σa + σqat ) + σAbt σ

qb
t ) + ψAbt (σAat σqat + σAbt (σb + σqbt ))

)
dt

−γψBat
(

(σa + σqat )σBat + σqbt σ
Bb
t

)
dt− γψBbt

(
σqat σ

Ba
t + (σb + σqbt )σBbt

)
dt+

Yt − ιtKt

qtKt

dt− Ct
Nt

dt− σηat ((ψAat + ψBat )σa + σqat ) dt+ σηbt ((ψAbt + ψBbt )σb + σqbt ) dt

+

(
ψAat
ηt

σa +
ψAat + ψAbt

ηt
σqat − (ψAat + ψBat )σa − σqat

)
︸ ︷︷ ︸

σηat

dZa
t
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+

(
ψAbt
ηt
σb +

ψAat + ψAbt
ηt

σqbt − (ψAbt + ψBbt )σb − σqbt
)

︸ ︷︷ ︸
σηbt

dZb
t .

We obtain (17).
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