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Abstract 

We use a panel data set of all U.S. tax records spanning 2008-2012 to study the impact of the 
Affordable Care Act (ACA) requirement to allow young adult dependents to be covered by their parents’ 
insurance policies on labor market-related socioeconomic outcomes. How health insurance expansions 
affect young adults through employment, education and family formation have important implications for 
public finance. Since tax data record access to employer provided fringe benefits in W-2 forms, we are 
able to examine the impact of this coverage expansion by comparing young adults whose parents have 
access to benefits to other similar aged young adults, before and after the law, and to young adults who 
are slightly older than the age threshold of the law. The use of tax data to identify families who have 
fringe benefits through their employer is an important advantage because the law was implemented during 
a labor market recovery in which outcomes could differ by age, even absent the law. Despite sizable 
increases documented elsewhere in insurance coverage resulting from this law, we find no meaningful 
changes in labor market related outcomes. We examine a comprehensive set of outcomes (whether the 
individual worked at all in the formal sector, self-employment, holding of employer provided retirement 
and health benefits, educational enrollment, total wages, whether taxes were filed, whether married and 
whether had children), and are the first to use a triple difference strategy to examine labor market effects 
of this law; we are also the first we know of to use tax data to examine any impact of the ACA. Although 
it is possible that labor market outcomes have changed in ways not captured by tax data (e.g. a change in 
hours of work while holding total wages constant, or a change in non-reported self-employment), our 
evidence suggests that the extension of health insurance to young adults did not substantially alter their 
labor market outcomes thus far.  
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Introduction 

A growing literature draws attention to the effects of health insurance expansions on 

outcomes other than health insurance and access to medical care (e.g. Sommers et al. 2013, 

Kolstad and Kowalski 2012, Baicker et al. 2013, Dague et al. 2013, Garthwaite et al. 2014, Heim 

and Lurie 2014, and Mulligan 2013). Specifically, important questions around the labor market 

consequences of expanding health insurance continue to be debated. In this paper, we examine 

whether providing young adults with a source of health insurance unconnected to their own 

employment (through their parent’s insurance plans) may reduce work attachment and job-lock, 

and encourage educational enrollment.  

Theories regarding the connection between health insurance and labor supply suggest that 

the young adult health insurance expansion may reduce the incentive to work in employment 

arrangements that offer employer health insurance by substituting parental health insurance for 

own-name employer health insurance, and may also reduce labor supply through an income 

effect. In addition to reducing the incentive for full-time work, the availability of an alternative 

form of health insurance might make young adults less likely to pursue other avenues that would 

have resulted in health insurance (such as marriage) and more likely to undertake activities that 

involve medical costs and lower labor force attachment (such as child bearing and full-time 

enrollment in school).  The effects have implications for public finance, especially when young 

adults are the target of the expansions. Expanding health insurance could affect the formative 

years of employment, human capital and family formation, affecting earnings and tax-paying 

capacity, as well as social safety net needs for several decades.  

 As an early provision of the Affordable Care Act (ACA), insurers and sponsors of self-

insured plans were required to allow dependents to remain on the private health insurance 
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policies of their parents until they reached age 26. Effects of this law on health insurance 

coverage are already documented, but there is only one limited prior examination of labor market 

outcomes. Studying the ACA young adult (YA) provision is also important for understanding the 

response of a key age group to the health insurance exchanges and Medicaid expansions that 

followed in 2014; young adults (generally defined as 19-25 year olds) represented the most 

uninsured age group prior to the reforms.  

Several studies exist on the insurance and medical care access effects of the YA provision 

(e.g. Monheit et al. 2011, Sommers et al. 2013, Akosa Antwi et al. 2013, Barbaresco et al. 2014, 

Akosa Antwi et al. 2014). Almost all studies examine this provision using a difference-in-

difference (DD) design comparing outcomes after the law, to outcomes before the law, for those 

in the affected age group (usually 19-25 year olds) vs. those outside (usually 27-29 year olds). 

Time trends are shown to be similar for the older and younger groups in the period leading up to 

2010, which suggests that differences in trends after 2010 are due to the change in policy, rather 

than underlying differences between age groups. However, the period after the YA policy change 

coincides with a labor market recovery, and any differential recovery patterns by age could be 

incorrectly estimated as caused by the YA provision, even if pre-trends tests did not signal 

concerns. Some researcher explore the use of further control groups, for example, to compare the 

effect of the law in states with some type of prior law extending coverage to young adults to that 

in states without such laws, but have found that the states with prior laws experience just as large 

an impact of the federal provision as those without, if not more (Akosa Antiwi et al 2013, Cantor 

et al 2012). Another dimension of difference in the impact of the law exists, but has rarely been 

exploited in the literature; the law only affected young adults with parents who have private 

insurance, thus young adults whose parents do not have employer benefits form an additional 
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control group.1 Our research design, which uses a triple difference strategy with information on 

parents (DDD), will also be informative about the reliability of estimates from DD designs that 

lack parental data.  

Most data sets that have been used in prior studies do not contain information on non-co-

resident parents. A limited exception is the SIPP 2008 Panel; since that is a four year panel 

survey that follows new households that form out of the originally-sampled households, 

researchers have information on current health insurance options of parents, as long as parent 

and child resided together at the start of the panel. We use the word ‘limited’ here because those 

whose parental information is available is non-representative in terms of being younger, and 

more likely to have lived with parents until older ages, than other young adults. Akosa Antwi et 

al. (2013) use this SIPP parental information to provide DDD estimates for the main outcomes 

examined in their paper (insurance status), but not for their cursory analysis of labor market 

outcomes. DDD estimates regarding insurance outcomes show employer coverage through 

parents increased almost 10 percentage points in the limited sample, compared to about a 7 

percentage point increase in employer dependent coverage in the full DD sample; however, these 

estimates are not statistically different from each other. Thus, based on the insurance literature, 

there is suggestive evidence that DDD methods could produce larger percentage point effects, 

which is reasonable because the DD effect measures the average of the effect on a treated and an 

untreated group.   

Longitudinally-linked tax data provide a unique opportunity to study labor market outcomes 

of the YA provision with data reported by employers as well as data self-reported under penalty 

                                                            
1 The use of this additional control group rests on the assumption that there was not selection caused by the law; 
there is evidence in the literature that the YA provision did not cause parents to seek insurance or change parental 
labor supply (Akosa Antwi et al 2013; Depew 2014).  
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of law, for the universe of individuals who either file tax returns,  receive a wage statement 

(Form W-2) or a tuition statement from a college or university (Form 1098-T). Starting in 2012, 

employers are required to report employer provision of health insurance on W-2s. Tax data 

represent a rich resource for examining other aspects of the ACA as well; since the first ACA 

provisions were passed in 2010 and because tax data are available with roughly a 2-year lag, our 

paper represents the first of likely many papers that will examine ACA impacts with tax data. 

In this paper, we examine whether an individual works at all in the formal sector, their self-

employment, holding of employer-provided retirement and health benefits, educational 

enrollment, total wages, whether tax returns were filed, whether they married and whether they 

had children.  We first use the typical DD approach of comparing adults of slightly different ages 

as in the prior literature. We show that prior to the policy change, there were statistically similar 

trends in outcomes between young adults with and without access to parental benefits, 

suggesting that any estimated DD effects would be attributable to the policy change.  However, 

DD effects may mask causal effects that occur only among those whose parents have employer 

fringe benefits, thus we move next to a triple difference approach that further compares young 

adults whose parents have access to employer provided fringe benefits to those who do not. 

We provide estimates using all young adults aged 19-25 years as the treatment group (while 

those aged 27-29 are the control group), but find our results hold even when we look only at the 

older members of the treatment group. Although it is possible that labor market outcomes have 

changed in ways not captured by tax data (e.g. hours of work, or non-reported self-employment), 

our evidence suggests that the extension of health insurance to young adults did not substantially 

alter labor market outcomes thus far, despite sizable changes in insurance status.  
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Background and Literature Review 

In this section, we briefly survey the large literature on the effect of insurance on labor 

outcomes in general (see Dave et al. 2014 for a longer literature review), and the much smaller 

literature focused on young adults.  

A long literature in health economics studies the connection between health insurance 

and the labor market (Madrian 2006; Gruber 20142). One strand of this work focuses on the “job 

lock” effect from public and private insurance (Madrian 1994; Cooper and Monheit 1993; 

Yelowitz 1995; Ham and Shore Sheppard 2005; Strumpf 2011; Decker and Selck 2011; Pohl 

2014; Dave, et al 2014; Hamersma and Kim 2009), and finds mixed evidence on whether having 

an outside source of health insurance leads to improved job outcomes or changes in labor supply. 

A few papers have also examined whether the availability of health insurance affects the decision 

to be self-employed, with Madrian and Lefgren (1998) and Wellington (2001) finding a 

significant effect, though Holtz-Eakin et al. (1996) find no significant impact.   

Another strand examines the effect of receiving health insurance on wages, as 

compensating differentials suggests that workers would accept lower wages in response to health 

insurance (e.g. Gruber 1994; Kolstad and Kowalski 2012; and others). This too has produced 

mixed evidence. This could partly be due to the fact that workers maximize utility, rather than 

just compensation, from employment choices, thus preferred jobs may not necessarily have 

higher wages or benefits. In addition to labor supply, labor demand could also be affected by a 

health insurance expansion. For example, employers may now find young adults with access to 

parental insurance cheaper to hire, and may increase their demand for such workers. However, 

                                                            
2 See, for example, Jonathan Gruber’s review presentation at 2014 Chicago Fed Conference “The Affordable Care 
Act and the Labor Market”, available at http://www.chicagofed.org/webpages/events/2014/affordable_care_act.cfm# 
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under the premise that workers always bear the full incidence of employer-sponsored health 

insurance, such labor demand incentives should not change. Instead, we simply expect that 

young adult workers receive higher pay when the employer no longer has to provide them with 

coverage when they gain coverage under a parent’s plan, and that this adjustment in wages 

means the labor demand does not change.   

Receiving health insurance through a parent may affect labor market incentives in a way 

similar to receiving Medicaid, in that both are not received from one’s own employer and both 

are relatively “free”. On the other hand, Medicaid eligibility is contingent on low income, and 

thus may have additional disincentives on labor supply that are absent in the receipt of parental 

coverage. Several recent papers look at the effect of Medicaid expansions in Oregon, 

Massachusetts, Tennessee, and Wisconsin (Garthwaite et al. 2014; Kowalski and Kolstad 2012, 

Dague et al. 2013; Baicker et al. 2013) to anticipate possible effects of the ACA. The study with 

the most rigorous design, a random assignment experiment in Oregon that expanded Medicaid to 

adults below the federal poverty level, shows very little effect on labor supply or earnings as a 

result of receiving Medicaid (Baicker et al. 2013). Dague et al. 2013 find in Wisconsin that those 

who were not enrolled in the program due to a cap worked more than those who were able to 

enroll in Medicaid, but effect size ranged from modest to medium.  Garthwaite et al. 2014 use 

the case of Tennessee and find extremely large increases in labor supply upon losing Medicaid 

coverage.  

While this literature on health insurance and labor has looked at subgroups such as those 

near retirement (Blau and Gilleskie 2008; Strumpf 2010; Kapur and Rogowski 2007), those who 

are unemployed (Gruber and Madrian 1995) and married women who have health insurance 

available through their husbands (Buchmueller and Valetta 1999), no prior work existed on 
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young adults before the ACA despite the importance of implications for public finance from 

knowing responses among this age group. This is mostly due to lack of policy variation that 

could be used to design a causal study.  A prior study that has examined the effect of health 

insurance on labor supply using policy variation is Akosa Antwi et al. (2013), who show initial 

estimates that suggest providing dependent coverage has reduced labor supply on the intensive 

(reduced or varying work hours) but not extensive margin (no effect on probability of being 

employed).  

Four additional papers {one of which is forthcoming and the others are working papers} 

shed light on the effect of insurance for young adults on labor market outcomes. Two of these 

use variation from state laws prior to the ACA, and two examine the ACA provision. Although 

more than half the states had some provision in place prior to the ACA, those laws are thought to 

be much weaker than the ACA YA provision. More than half of employer provided health 

insurance is self-insured, and thus exempt from state mandates. State mandates also do not 

change IRS tax obligations, thus employers would not be able to provide tax-exempt 

compensation when covering those over age 18 (unless disabled or under age 23 and a full-time 

student), forming a further obstacle to the effectiveness of state laws. State laws also often had 

other stipulations, such as requiring that the dependents be full-time students or not married.  

Dillender (2014) looks at the long run labor market consequences of experiencing young 

adulthood with insurance due to state dependent coverage laws while Depew (2014) estimates 

the impact of state laws on contemporaneous outcomes of work and education. Dillender’s 

results relate to the very long run effects of the law, thus cannot be compared with our findings 

that relate to data covering up to approximately one year after the effective date. Depew’s 

findings are consistent with Akosa Antwi et al.’s results in that the law appears to cause only a 
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decrease in the hours worked, and not in the probability of any work.  Bailey (2014) finds that 

the ACA YA law increased entrepreneurial activity while Bailey and Chorniy (2014) finds that 

the law did not have any impact on job lock. Bailey’s and Chorniy’s finding of no job-lock 

effects are consistent with the findings in our paper, although the findings of increased 

entrepreneurial activity are not; it is possible that entrepreneurial activity could increase in ways 

not captured by tax information.  

Dillender (2014) studies the long run implications of extending dependent coverage to 

young adults, on labor market outcomes at later stages in life. Specifically, he compared the 

outcomes past age 22 of those who spent all their very young adult years (defined as 19-21) with 

extended dependent coverage to those who did not. Dillender finds that those who had dependent 

coverage in their young adult years have wages that are 3.1 percent higher for the females and 

1.6 percent higher for the males, corresponding to education increases of 0.17 years for men and 

0.07 years for women. Note that because this is a question of long run effects, this paper is only 

able to assess the effect of state laws that happened in a few states (9 or 4, depending on the 

specification, out of the approximately 30 states that passed such laws) and cannot directly tie 

these effects to increases in insurance coverage while young adults, because the ACS did not 

record insurance status until 2008. These effects are also studied for a period during which 

insurers typically cover full-time students under age 23 even absent state laws, thus any other 

factors that differ between younger and older cohorts in this set of states vs other states would be 

captured as a causal effect of the law. This is less stringent of an identification assumption 

relative to the assumption underlying DD analysis of the ACA YA provision.  

Depew (2014) examines the contemporaneous effect of state laws, and finds evidence of 

reductions in labor supply on the extensive but not intensive margin. The method of 
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identification used in this paper is to compare outcomes among those who are younger and 

affected by the law (exact age varies by state) to those of older ages in states with mandates and 

to those in states without mandates, using data from the American Community Survey (ACS) of 

2001-2010 on 19-29 year olds.  This triple difference strategy does not require data on parents 

because of the variation at the state level in adoption of dependent coverage mandates over time; 

if parental information were available, a fourth level of difference would be possible, to look for 

effects of state laws only among those whose parents have access to benefits (after first ensuring 

that the law does not affect parental work decisions). As with our tax data, Depew (2014) does 

not have data on insurance status in the main data set (ACS), but does conduct a supplementary 

analysis using the CPS to confirm that the state laws display the expected increases in private 

insurance status.    

Bailey (2014) uses the American Community Survey data from 2005-2011 to study 

entrepreneurial activity among 19-25 year olds in the first year of the ACA policy (2011) 

compared to those aged 27-33 years, and finds that receiving coverage increases the probability 

of starting a business by 13-24 percent. In relation to the number of individuals in the treatment 

group who received coverage, this effect implies that receiving dependent coverage increases the 

probability of starting a business by 2 to 3 fold. This result is driven by behavioral changes 

among women, and the very young (19-22 year olds). The ACS codes an individual as self-

employed if they work more hours for their own business for others, so that measure could be 

considered a more conservative measure of self-employment relative to that in tax data. On the 

other hand, self-employment may be underreported in tax data relative to survey data (since there 

are financial benefits from underreporting in tax data), and such underreporting may be more 

acute among the unincorporated self-employed, the group for which Bailey found an effect.   
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Bailey and Chorniy (2014) examine job-lock using monthly records of labor market 

activity available in the CPS for 2008-2013. They examine the rate at which 19-25 yr olds switch 

jobs during the previous 4 months, relative to 27-32 yr olds. The results indicate that there is no 

differential rate of switching coverage among the younger vs the older group, pre vs post policy 

change.  

This literature review highlights that there is a long literature on the connections between 

health insurance and the labor market, and a budding literature devoted to studying the labor 

market effects of extending health insurance coverage to young adults specifically. Results for 

the ACA YA provision from DD analyses as well as for the state YA mandates from DDD 

analyses suggest that there appears to be a switch away from forms of labor market activity that 

entail employer provided health insurance (such as reduced full-time work and increased 

educational and entrepreneurial activity) but not of increased job mobility. 

 

Hypotheses 

Economic intuition formalized in prior literature suggests that providing access to health 

insurance through a parent would reduce the demand for health insurance through employment, 

and thus reduce labor supply on extensive and intensive margins, or lead to changes in the nature 

of work. Young adults would be more able to pursue all alternatives outside of full-time work at 

firms that offer benefits, such as self-employment, education, or leisure, as the opportunity costs 

of such activities have decreased. Young adults might be less likely to marry, to the extent that 

marriage provides an additional avenue to insurance coverage. They may also be more likely to 

have children if the health care costs of a pregnancy were a determining factor, although free 
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access to contraceptives through parental insurance may also lead to a decline in births. Those 

workers who no longer require employer-provided health insurance could experience wage gains 

as a result of the compensating wage differential for employer provided benefits, but may also 

appear in our data to have lower annual wages because of a shift towards other types of labor that 

maximize utility but do not involve higher financial remuneration. We expect that these effects 

are present only for those whose parents have access to employer provided health insurance, and 

that employment effects maybe larger for older ages in the 19-25 range because of the higher 

likelihood of being in school during the earlier years. 

 

Method  

We estimate the impact of the YA provision using both DD and triple difference (DDD) 

identification methods. We compare those in the treatment age to those outside treatment age 

(19-25 being treatment age and 27-29 being control age; those aged 26 are excluded), before and 

after the law, among those with parents who are likely to have access to health insurance 

compared to those who do not. We exclude all of 2010 as a period of staggered implementation; 

some insurers complied as early as spring 2010, but as most insurance plans renew on January 1st 

2011, we consider that the full implementation date. We conduct graphical and statistical checks 

that prior trends in labor markets are similar between those in the control and treatment ages, 

although as we will explain later, we have limited years of data prior to policy implementation 

for these tests. 

Figure 1: Difference in Difference Comparisons 

 Pre-policy period Post-policy period 
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Treatment age group A B 
Control ages group C D 

Note: DD estimate is (b-a)-(d-c). 

We start with a DD model as above where a,b,c and d represent labor market outcomes 

for individuals who belong to the Treatment and Control age groups (19-25yr olds and 27-29 yr 

olds, respectively in the Pre- and Post-policy time period (2008 and 2009, vs 2011 and 2012, 

respectively). In order to capture the effect of the policy on the treatment group apart from 

national time effects and fixed differences across age, we compute the differences in differences  

estimate (b-a)-(d-c). This captures the average impact since reform implementation, by 

comparing insurance coverage during the post period relative to coverage before, among the 

treatment group relative to the control group. This method has the advantage of parsing out 

effects that could otherwise be wrongly attributed to the policy if we were only to compare 

effects among the treatment group over time, while also being a very transparent method of 

analysis.   

Our triple difference estimate starts with a calculation similar to [1] except we first limit 

the sample to those whose parents have access to employer-provided benefits. We expect that 

causal effects of the YA policy will only occur in this population. We argue that the availability 

of YA benefits does not change parental labor supply in ways that would change the composition 

of the treatment group (evidence in support of this is found in Akosa Antwi et al. 2013). Thus, to 

complete the DDD we also estimate a version of the DD calculation among those whose parents 

do not have employer fringe benefits. This would capture other ways by which the labor supply 

of young adults may have changed, relative to older adults, transitioning from the pre to post 

policy time period. Evidence in Hoynes et al. (2012) suggests this is possible, as they find that 

the recession affected young adults worse than older adults. Our DDD estimate is the difference 
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between the DD estimate for those with parents with employer benefits and the DD for those 

whose parents do not have benefits, and relies on fewer assumptions than the DD estimate. 

   

Figure 2: Difference in Difference in Difference Comparisons 

 Pre-policy period Post-policy period
 Treatment age group with benefits A b 
Control ages group with benefits C d 
 Treatment age group with benefits A B 
Control ages group with benefits C D 
   

Note: DDD estimate: [(b-a)-(d-c)]-[(B-A)-(D-C)] 

In all cases, we test the statistical significance of the raw DD and DDD estimates, after 

clustering our standard errors at the age by year level.  We have also conducted regression 

adjusted versions of the DD and DDD calculations in which we account for the national annual 

unemployment rate, each year of age fixed effects, and an interaction of age fixed effects and the 

national unemployment rate. We find that some of the DD estimates are statistically significant 

when we include the additional variables, but that the results of our DDD comparisons are robust 

to the regression adjustments and thus do not change our conclusion.   

 

Data 

We use the Internal Revenue Service (IRS) Compliance Data Warehouse (CDW) data, which 

contains most of the population of U.S. federal tax documents. We use years 2008-2012 because 

of the ages of individuals we wish to have linked to parental records, but the CDW is available 

for 1996-2012.3 Research using these data is limited because of the highly restricted nature of 

                                                            
3 Some data from 2012 will continue to be updated as information from late filers are incorporated. We do not 
expect this to affect results substantially.  
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access. The CDW has been used in prior tax and labor papers including Chetty et al. (2013) 

although ours is the first paper to use these data to study the Affordable Care Act.   

Since non-dependent children are not listed on their parents’ tax form(s), and vice versa, 

it is not possible to link young adults and parents using only tax recent from recent years.  

However, , there exists a file that contains, for the universe of filers in 1997, the SSNs of primary 

and second filers matched to the SSNs of their dependent children, if any,4 which makes it 

possible to match parents’ and children’s information if those children were claimed as 

dependents in 1997. So, to create a dataset from the CDW that links parents’ and children’s 

information, we gather tax information from 2008-2012 for both the children and their parents, 

and merge each young adults’ information to those of the individual(s) that were listed as their 

parent(s) in 1997 (provided that those parents appeared in the 2008-2012 tax data).     

Because individuals who were older than 18 years in 1997, or who were born after 1995, 

were less likely to be claimed as a dependent in 1997, we are only able to utilize information on 

birth cohorts from 1979 through 1995. This structure means that we are limited in conducting 

pre-trends tests: we cannot go back further than tax year 2008 (see the illustration below) and 

still have the full set of control individuals aged 27-29, which limits our pre-trends tests to 2008-

2009. 

 

Illustration: Age by birth cohort and year of tax 
data 

Cohort 
 1995 .. 1979

 2004  9 25   

Year 2005  10 26
2006  11 27

                                                            
4 Almost all children 18 and younger are likely claimed on a parent’s tax returns, especially given the tax benefits of 
claiming children. 
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 2007  12 28   

 2008  13 29   

..  
2012  17 33

Note: Oldest age of dependent is assumed to be 18 in 1997, thus in the 1979 cohort. Italics show what 
we would have if we expanded years of data to before 2005. The last year back in time for which we 
would have 27-29 yr olds represented is 2008. If we go back past 2006, we would not have any age in 
the control age range.  

 

Ideally, we would know in each year of our data 2008-2012 whether the parent has access to 

employer health insurance. Since the IRS requirement for W2s to include data on employer 

health insurance started only in 2012, we have this information reported just for one year. In 

addition, this reporting requirement of the ACA only applies to firms with over 250 workers, and 

approximately 40% of the US workforce is in firms with fewer than 250 workers,5 though it 

appears that compliance with this requirement by large firms is high by our (unreported) 

calculations using publicly available data from the Medical Expenditure Survey Insurance 

Component.  

We backfill data on employer provision of health insurance for years prior to 2012 using the 

following steps: using 2012 data, we know whether an employer with a certain Employer 

Identification Number (EIN) offers health insurance if any of the workers of that EIN have a W2 

that reports health insurance. From that, we create a data set of EINs who are known to offer 

health insurance in 2012. Under the assumption that these employers have always offered health 

insurance during 2008-2011, and that they offer insurance to all their workers when they offer to 

any, we have information on employer health insurance offers for 2008-2012. When we 

examined these data, we found that the rate of employer health insurance increases sharply over 

time, as we would expect because our method of imputing works best for more recent data.  As 
                                                            
5 Author calculations using data at http://www.bls.gov/web/cewbd/table_f.txt   
That shows that in Q1 2013, 51.6M worked in private firms with fewer than 250 employees, out of a total payroll 
number of 135.7M (from https://ycharts.com/indicators/total_nonfarm_payrolls).  
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an alternative, we use information on whether parents have a retirement plan to which the 

employer contributes. Retirement plan contributions are recorded on W2s in all years of our data, 

and there is a high correlation between having employer health insurance and a retirement plan 

through an employer. Thus, we use this variable as a proxy for availability of health insurance, 

although we have run estimates with the employer health insurance variable as well and note that 

results are qualitatively similar.6 

One may be concerned whether the use of tax data means there is selection into the sample 

due to the policy changes. However, we have information from W2s and some other tax forms 

regardless of whether the person filed an income tax return. For example, 1098-T forms are filed 

by all colleges and universities to the IRS, indicating tuition payments were received on behalf of 

a student. We examine whether the law changed the probability of filing a tax return, as that 

would otherwise potentially change our sample composition for variables (such as whether they 

are married, whether they are self-employed, or whether they have children) that are only 

available on individuals who file a return.  

We use a 1% sample from the parent-child matched CDW for our analysis, consisting of 

571,049 unique individuals who range in age from 13-29. When we limit to those aged 19-29 

excluding 26 yr olds and use all data on 2008-2012 except 2010, we obtain 1,352,731 person-

year observations, corresponding to about 340,000 unique individuals. We examined the 

breakdown of our sample by year and age and observed that the number of individuals does not 

change in any systematic way over time as our data are a balanced panel, except that the number 

of older aged individuals is consistently lower than those at younger ages. This is likely due to 

the fact that in 1997, those who are aged 17 and 18 are more likely to be already living outside of 
                                                            
6 Another proxy would have been full-time employment in a large firm. However, tax data does not contain 
information on hours of work. 
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the parental household and not claimed as a dependent. We conducted statistical tests to ensure 

that there are no systematic difference in sample size that aligns with our main identification 

method, and found no evidence of systematic difference (for example, between treatment and 

control, before and after the policy, for the DD). 7 

 

Results: 

In Figure 3, we display the DD results by plotting the labor market related outcomes over 

time (2008-2012) for the treatment group and the control group. In almost all the outcomes, it 

appears that the older and younger groups had similar trends in the period prior to the policy 

(2008-2009), as well in the post-policy period (2011-2012). There are some exceptions; for 

example, the non-filer outcome shows a steeper increase for the treatment group than for the 

control group. 8 In Figure 4 we conduct a similar exercise to show the triple difference results 

visually, using parental access to retirement benefits as the third level of difference. Figure 4 

shows that in terms of levels, those whose parents have access to employer benefits have 

different levels of labor market outcomes, as would be expected of different socioeconomic 

status groups. However, here too it is not clear that there is any systematic difference in trends 

before or after the policy.9  

                                                            
7 Year varies from 2008-2012, and average number of observations in a given age-year cell is 33,942. There is close 
to a 50/50 split between treatment and control, and post and pre data. Please see Appendix Table 1 for a breakdown 
of our sample by age and year. 

 
8 Note, also, that the health insurance variable shows large increases over time for all groups. This is likely an 
artifact of the way we impute the data for years prior to 2012. For this reason, we have only shown the DDD graphs 
using the parental retirement plan indicator to measure access to parental employer benefits.  
9 We conducted unreported tests of statistical trends in outcomes prior to the policy, between the different control 
and treatment groups, and describe them in the tables of DD and DDD results. 
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Because time trends that look visually the same may mask small differences that would 

not be apparent to the eye, we next present raw DD and DDD calculations as explained above.10 

These results are reported in Table 1 (DD) and Table 2 (DDD). In Table 1, the value of 0.002 for 

the raw DD estimate for the “student” outcome indicates that, had the effect been statistically 

significantly different from 0, the YA provision likely caused an increase of 

(0.002/0.408)*100=0.49 percent increase in the probability of being a student. We include 

columns for noting whether the estimates are statistically significantly different from zero (none 

are), and a column for whether these outcomes have time trends that differ between the treatment 

and control groups in the years prior to the policy change (none do). These ‘pre-policy trends 

tests’ indicate whether there had been divergent trends in outcomes even before the policy, 

which would signal unreliability of the DD estimates. In Table 2, the raw DDD estimates too 

show that there are no outcomes that are statistically significantly different from 0, and that there 

is just one pre-trends test that fails (non-filers, at the 10% significance level). The coefficient 

magnitudes in the DD and DDD calculations are also fairly small, often less than one percent of 

the base.  This lack of statistically significant results occurs despite the fact that our sample sizes 

are in the hundreds of thousands, even with a 1% sample of the CDW, thus would have the 

power to catch even more differences than in cases that use a smaller sample, as the CPS or 

ACS.   

Taken as a whole, the results presented in the Figures 3-4 and the Tables 1-2 suggest that  

there is no evidence to indicate that labor market outcomes were affected by the YA provision, 

even when we look within a group who had access to parental employer benefits compared to 

                                                            
10 We report results that compare 19-25 yr olds to those aged 26-29 years of age. In unreported results, we 
experimented with alternate treatment groups defined as 23-25 yr olds or just 24-25 yr olds. (In all comparisons, the 
control group is 27-29 yr olds). 
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those who do not. We found fairly similar results when 23-25 yr olds were used as an alternate 

treatment group, and when we used our measure of parental employer health insurance for the 

DDD estimates, in unreported results.  Thus the causal effects of the YA provision on labor 

market related outcomes appears minimal, at least through 2012. 

 

Limitations and caveats of method and data 

There are several caveats to our measures in the tax data. Most notably, we are unable to 

examine dependent health insurance as an outcome, while almost all prior papers on the YA 

requirement have been able to ascertain some effect on dependent coverage, or private health 

insurance. Having that outcome in our data could enable us to provide a definitive DDD estimate 

on the insurance impact of the law and ascertain an IV equivalent within the same data set. 

However, we take as given that were this information reported, our method would also show an 

increase in dependent coverage. Estimates in Akosa Antwi et al 2013 show about a 7 percentage 

point increase in dependent employer coverage for young adults aged 19-25 in the period after 

the law, compared to before the law. We do not have a comprehensive DDD estimate for 

insurance coverage from that paper, but we expect it to be in the 10-14 percentage point range; 

our estimates indicate that 56% of all young adults have parents with access to retirement 

benefits (which we take to proxy for health insurance availability).  

 Our DDD method relies on separating those with access to coverage through parents. 

Since our variable for employer health insurance through W2s is not reported for all employers 

and only actually reported in 2012, we rely on data regarding retirement plans. Although there is 
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a high correlation between the two, the use of retirement plan availability introduces some 

measurement error into the DDD estimate.  

Another limitation is that tax data only provide annual observations. Thus, we cannot split 

the 2010 year into pre and post periods as we could if the data were available quarterly.  

 

Conclusion 

There is very little prior evidence on how access to health insurance affects socioeconomic 

outcomes of young adults relevant for public finance. Tax data provide a unique method to 

estimate the impact of the YA ACA requirement using a triple difference strategy, as well as a 

large sample of administratively reported data. Prior evidence showed a reduction in hours, and 

an increase in entrepreneurial activity, but no effect on being in the labor market or other 

outcomes. The outcomes we study: are whether the individual worked at all in the formal sector, 

self-employment, holding of employer provided retirement and health benefits, educational 

enrollment, total wages, whether income tax returns were filed, whether married and whether had 

children. We find no statistically significant effects on any of the outcomes we study, and 

implied magnitudes are small. This finding holds even in our more stringent specification, our 

DDD approach. As a caveat, our data on holding of employer-provided health insurance is 

potentially weak as it was only recently mandated as a reporting requirement on W2, and only 

for large employers. However, we do not find qualitatively different results from the use of 

retirement benefits as a proxy for health insurance. Although it is possible that labor market 

outcomes have changed in ways not captured by tax data (e.g. hours of work may change even 

while total wages do not, and non-reported self-employment may change), our evidence suggests 
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that the extension of health insurance to young adults did not substantially alter labor market 

outcomes thus far. 

Aside from the labor supply effects of the young adult provision, there are also 

distributional implications of expanded insurance as a dependent: the provision spreads costs to 

parents and co-workers of the parents. Employer health insurance is partially taxpayer financed 

because of the generous exclusion it entails. Medicaid expansions and exchange subsidies, on the 

other hand, are almost entirely taxpayer financed. 

Tax data have been used to study the labor market impacts of health insurance in the past 

(e.g. Heim and Lurie 2010); however, we are the first to use tax data to look at the effect of the 

ACA on labor market outcomes. As data become available, we will be able to analyze other 

features of the ACA. For example, we will be able to study how labor market outcomes and 

health insurance changes for young adults who do not have access to parental benefits, in 

response to Exchange and Medicaid expansions that occurred in 2014. 
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Figure 3: DD Graphs 
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Note: Definitions of abbreviations used in the Figure. Student=enrolled in college or university, Children=has any children, LnWage=log annual wages, Primary Retirement=has retirement from primary 
employer, Full Time=full time student, Any Retirement=has retirement at any job that year, Any Self Emp=has any source of earnings that is self-employment, non-filer=did not file tax return, no 
W2=did not have a Form W2 that year (non worker),  prim_HI Offer=had an offer of health insurance at primary job, grad student=enrolled as a graduate student, married=married. 

Figure 4: DDD Graphs 

 

 

 

Note: please see definitions in note to Figure 3. 
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Table 1:  DD Calculations  

  

Variable (Post-Pre)treat-( Post-
Pre)control 

(Post-Pre)treat (Post-Pre)control Mean (post, treatment) Percent 
Effect 

Statisti
cal 
signifi
cance 
level 

Whether trends are different, pre 
policy at certain significant level 

Student 0.002 0.008 0.007 0.408 0.49   

any children 0.008 -0.013 -0.021 0.16 5   

any retirement 0.001 -0.024 -0.025 0.183 0.54   

any self-employment 0.001 0.0003 -0.0004 0.04 2.5   

full time student 0.013 0.030 0.017 0.375 3.47   

primary retirement 0.004 -0.022 -0.026 0.159 2.52   

Married 0.011 -0.018 -0.029 0.125 8.8   

graduate student -0.002 0.001 0.003 0.028 -7.14   

Nonfiler 0.003 0.027 0.024 0.277 1.08   

no w2 0.004 0.023 0.019 0.215 1.86   

health insurance offer 0.002 0.099 0.096 0.433 0.46   

log wage -0.028 -0.034 -0.006 8.97 -0.31   

Note:  The “Mean” column shows the mean of the outcome, for the treatment group, in the post period. The “Percent Effect” column 
shows the first column (the DD estimate), divided by the mean, and multiplied by 100, thus showing the effect size as a percent of 
the mean. The “statistical significance level” column shows whether the raw DD estimate is statistically significant.  The last column 
notes whether the outcome in question showed statistically significantly different pre-policy time trends when comparing the 
treatment group to the control group, and if so, at what level of statistical significance.  In both the last 2 columns, *** indicates 
statistical significance at the 1% level; ** indicates the 5% level, and * indicated the 10% level.  These columns show nothing meets 
conventional levels of statistical significance. 
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Table 2: DDD Calculations   

Variable DDD  Mean (post, treatment, parents with 
retirement) 

Percent effect (ret)  Statistical 
significance 
level 

Whether 
trends are 
different, 
pre policy 
at certain 
significant 
level 

student 0.001  0.48 0.21    

any children 0.009  0.121 7.44    

any retirement -0.001  0.212 -0.47    

any self employment -0.001  0.036 -2.78    

full time student 0.010  0.445 2.25    

primary retirement -0.0004  0.186 -0.22    

Married -0.006  0.115 -5.22    

graduate student -0.001  0.036 -2.78    

non-filer 0.005  0.234 2.14   * 

no w2 0.005  0.173 2.89    

health insurance offer 0.002  0.469 0.43    

log wages -0.011  9.031 -0.12    

Note: The first two columns show the raw DDD estimates that use where parents have retirement benefits. This is [((Post-Pre)treat-
(Post-Pre)control) p_retirement]-[((Post-Pre)treat-(Post-Pre)control) no_p_retirement] . The “Mean” column shows the mean of the 
outcome, for the treatment group, in the post period, for those whose parents have access to retirement benefits (for brevity, only the 
parental retirement version is show. Values are similar for the parental health insurance version). The “Percent Effect” columns shows 
the raw DDD estimates, divided by the mean, and multiplied by 100, thus showing the effect size as a percent of the mean. The 
“statistical significance level” column shows whether the raw DDD estimate is statistically significant.  The last column notes whether 
the outcome in question showed statistically significantly different pre-policy time trends when comparing the treatment group to the 
control group in the DDD context, and if so, at what level of statistical significance.  In both the last 2 columns, *** indicates statistical 
significance at the 1% level; ** indicates the 5% level, and * indicated the 10% level. The values of these two columns are blank except 
for one entry, indicating that none of the results are statistically significant, and that only one of the pre-trends tests showed any 
statistically significant differences in the DDD context.  
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Appendix Table 1: Sample Sizes by Age and Year, Internal Revenue Service (IRS) Compliance Data Warehouse (CDW) data 1% 
Sample 

age 2008 2009 2010 2011 2012
19 35,453 36,457 35,845 35,161 34,679
20 34,323 35,453 36,457 35,845 35,161
21 33,981 34,323 35,453 36,457 35,845
22 33,176 33,981 34,323 35,453 36,457
23 33,353 33,176 33,981 34,323 35,453
24 32,756 33,353 33,176 33,981 34,323
25 32,678 32,756 33,353 33,176 33,981
26 33,120 32,678 32,756 33,353 33,176
27 32,441 33,120 32,678 32,756 33,353
28 31,961 32,441 33,120 32,678 32,756
29 27,952 31,961 32,441 33,120 32,678

Note: 2010 data, and data for 26 yr olds, are not used in the differences calculations.  


