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Solar Geoengineering, Uncertainty, and the Social Cost of Carbon 

 

Abstract 

 

We consider the socially optimal use of geoengineering as a tool to manage climate change. 

Geoengineering offers the possibility of reducing the damages from atmospheric greenhouse gas 

concentrations, potentially at a lower cost than reducing emissions. If so, then an optimal policy path 

can include less abatement than is recommended by models that do not include geoengineering, and 

the price of carbon will be lower. Solar geoengineering reduces temperature but does not reduce 

atmospheric or ocean carbon concentrations, and that carbon may cause damages apart from 

temperature rise. Finally, uncertainty about both climate change and about geoengineering affects the 

optimal deployment of geoengineering. We explore these issues with both an analytical model and a 

numerical simulation. The optimal carbon tax is lower than the tax recommended by the model without 

geoengineering, substantially so depending on the parameterizations of geoengineering costs and 

benefits. Carbon concentrations are higher but temperature changes are lower when allowing for 

geoengineering. All policy paths are sensitive to calibrated parameter values, and the optimal level of 

geoengineering is more sensitive to climate uncertainty than is the optimal level of abatement. The 

point estimates should be interpreted with caution since there is a great deal of uncertainty surrounding 

feasibility and side effects of geoengineering. 
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Geoengineering is "the poor orphan that almost nobody wants to mention." (Schelling, 
2007, p. 348) 
"Most economic analyses of climate change, however, have ignored geoengineering." 
(Barrett, 2008, p. 46) 
"I suspect, however, that there is at least a small chance we would live to regret treating 
the whole subject [geoengineering] as taboo." (Summers, 2007, p. xxiv) 

 

I. Introduction 

 Greenhouse gases (GHGs) like carbon dioxide (CO2) contribute to climate change and thus 

create negative externalities. The standard Pigouvian solution to the market failure caused by negative 

externalities is to price the externality at marginal external damages so that producers internalize the 

externality and produce at the optimal quantity. The Pigouvian tax is set at marginal external damages 

at the optimal quantity. Geoengineering (GE, also called climate engineering or climate intervention) is 

an alternative way to reduce the damages from GHGs: instead of reducing the quantity of GHGs, GE can, 

at leas tin part, reduce the damages that they inflict. Because GE is not aimed at reducing emissions, a 

Pigouvian tax on GHG emissions will do nothing to create incentives for GE. If GE is part of the optimal 

policy portfolio, then a Pigouvian tax alone cannot bring about the first-best. Furthermore, if the 

Pigouvian tax is set at the level of marginal external damages without GE, then the tax will be too high 

relative to the optimum level (which is equal to marginal external damages with GE) and the level of 

abatement and abatement expenditures will be too high, resulting in welfare loss. It has been argued 

that the implementation of GE may be substantially cheaper than abatement, possibly creating a very 

large welfare loss from ignoring GE.1  But GE also introduces new sources of damages and uncertainty, 

possibly eroding on the welfare gains from its implementation, even possibly increasing the welfare loss 

from ignoring it. 

                                                           
1 For example, McClellan et al. (2012) find that GE could be undertaken globally for as little as $1-$3 billion 
annually. By comparison, the EPA's cost estimate of its proposed Clean Power Plan puts the annual cost at around 
$4-$8 billion annually, and that policy only yields a 30% reduction in CO2 emissions just from power plants in the 
United States. 
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 The purpose of this paper is to investigate, theoretically and numerically, how the possibility of 

GE affects optimal climate policy. Does GE substantially reduce the optimal carbon tax? Does ignoring 

GE lead to policies that encourage too much abatement at too high a cost? How does uncertainty over 

climate change and over geoengineering damages affect optimal policy? How important is the fact the 

GE reduces temperature but does not reduce carbon concentrations? We develop a theoretical model 

that captures these effects and demonstrates the welfare  effects of introducing or ignoring GE. We 

augment a standard integrated assessment model (IAM) of climate change by adding the possibility of a 

specific type of GE to the Dynamic Integrated Climate-Economy (DICE) model (Nordhaus 2008). Costs 

and benefits of GE are calibrated from various prior estimates, though we note that there is substantial 

uncertainty. Therefore, we also explore conditions under which GE will or will not represent a 

substantial component of optimal policy. We caution that the purpose of this paper is not to argue one 

way or the other about the merits of GE or to estimate the optimal level of its deployment, but rather to 

investigate the qualitative point that ignoring GE in models may lead to biased and incomplete policy 

recommendations.  

 There is a growing literature that examines the economics of geoengineering.2 Barrett (2008) 

explores the "incredible economics of geoengineering," by which he means the fact that GE is 

(potentially) so much cheaper than emissions abatement that it could be undertaken by a single 

country.3 This creates a unique set of administrative problems. In fact, if the key problem with 

administering abatement policy is the inability to achieve international consensus to act, the key 

problem with GE might be ensuring that there is not too much implemented, since any number of 

                                                           
2 In addition to the small but growing literature in economics on GE, there is a large scientific literature on the 
subject. Latham et al. (2014a) and the associated special journal issue provide a recent introduction. 
3 The prospect of low-cost GE is not universally accepted. For instance, Keller et al. (2014) use an Earth system 
model to simulate several different types of GE in the presence of high GHG emissions (no abatement), and they 
find that the effects of GE on warming are limited (less than an 8% reduction) and the side effects are potentially 
severe. 
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nations may do it independently. A series of studies examine this issue of international governance for 

GE. Ricke et al. (2013) look at the incentives behind the formation of coalitions to implement GE. These 

incentives are different than those behind coalitions to abate GHGs. With GE, there are incentives to 

keep coalitions small so that action can be taken. Victor (2008) argues for norms to govern the 

deployment of GE. Weitzman (2012) models GE as a "free-driver" problem analogous to the "free-rider" 

problem of abatement. He notes that GE, depending on the level at which it is undertaken and the 

nation in question, can be either a public good or a public bad (thus he labels it a "public gob"). Moreno-

Cruz (2011) models two countries agreeing on both mitigation and geoengineering, and shows that GE 

can lead to inefficiently high levels of mitigation. These papers are primarily concerned with how 

international agreements can be crafted to implement GE (or to prevent too much implementation).4 

 By contrast, a perhaps more fundamental question (though one less-studied) is how much GE is 

optimal? Moreno-Cruz and Keith (2013) incorporate GE into a two-period model of climate change and 

solve for optimal policy. They find that the uncertainty related to GE is an important determinant of 

optimal policy. Including GE can reduce the overall costs of climate policy by around 2 percentage points 

of GDP. In this case, abatement and GE are substitute policy levers. Other papers have added GE to 

integrated assessment models (IAM) and examined the policy implications. Bickel and Lane (2009) show 

that GE promises potentially large net benefits, though there is substantial uncertainty. They model two 

types of GE: solar radiation management (SRM) and air capture (AC), and they conclude that SRM is 

cheaper and more cost-effective. They conduct a benefit-cost analysis of various levels of 

implementation of GE, and they consider how implementing GE affects carbon taxes. But, they do not 

solve for an optimal level of GE. Goes et al. (2011) make several modifications to the DICE model, 

                                                           
4 Barrett (2014) discusses the literature on the governance of geoengineering, what he calls "the fundamental 
problem posed by geoengineering." Rayner et al. (2013) present the "Oxford Principles," a set of five guidelines for 
international GE governance. Lloyd and Oppenheimer (2014) argue for an international agreement with a small 
number of nations. A similar argument is related to moral hazard: deployment of GE may reduce or eliminate the 
willingness to reduce carbon emissions (Corner and Pidgeon 2014).  
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including allowing GE and refining the climate dynamics. Their specification imposes an exogenous 

intermittency in GE which makes it less effective.5 They present summaries of policies with an optimal 

mix of abatement and GE (subject to the intermittency), but they do not present implications for policy, 

i.e. carbon taxes with GE. Bickel and Agrawal (2013) extend the analysis of Goes et al. (2011) by 

considering alternate conditions under which GE would be deployed; in contrast to Goes et al. (2011), 

Bickel and Agrawal (2013) find that under some scenarios a substitution of GE for abatement can pass a 

cost-benefit test. Gramstad and Tjøtta (2010) include GE in DICE and conduct a cost-benefit analysis of 

GE under various assumptions about the level undertaken and its costs. Under all specifications, GE 

passes a cost-benefit analysis, with net benefits ranging from $1.5 trillion to $17.8 trillion. 

Postponement of GE by 30-50 years reduces those net benefits by less than 10%. They do not consider 

carbon taxes or the optimal level of GE. 6 

 The contribution of our paper relative to this other literature on the policy implications of GE is 

threefold. First, we focus on how the inclusion of GE affects optimal abatement and the optimal carbon 

tax. Our theoretical model shows that including GE reduces the optimal carbon tax. Since GE appears to 

be so much cheaper than abatement, it is possible that including GE will drastically reduce the optimal 

carbon tax. It is theoretically possible that optimal policy will involve a corner solution with no 

abatement (and hence no carbon taxes), though we show numerically that this does not hold because of 

GE's inability to deal with carbon concentrations. To quantify this, we modify the DICE model to include 

the possibility of GE and use it to solve for optimal policy, where both abatement and GE are policy 

choices. While solving for the optimal carbon price is admittedly a straightforward extension of other 

papers that have used an IAM with GE to find optimal policy, we argue that it is nonetheless an 

                                                           
5 Jones et al. (2013) also investigate the effect of abrupt suspension of GE (a "termination effect"), using a 
simulation of 11 different climate models. Also see Ross and Matthews (2009). 
6 Klepper and Rickels (2012 and 2014) provide review articles on the economics of geoengineering. Emmerling and 
Tavoni (2013) use a different IAM, WITCH, to model GE and abatement policy. 
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important contribution that should not be overlooked. If GE means that the optimal carbon price is 

much lower than current estimates of the social cost of carbon, this has very important policy 

implications. We calculate the welfare loss of ignoring this fact. We also explore how different 

assumptions about various parameter values affect the time path of optimal policy. For instance, it is 

well known that small changes to the discount rate used in the model can have large changes in optimal 

abatement paths, but little is known about how discounting affects optimal GE paths, or how 

discounting affects abatement when GE is an option. Should GE be delayed, or implemented 

immediately? Should GE ramp up, like a carbon price does in DICE, or start high and taper? 7 

Our second contribution to the literature is our focus on uncertainty. There are substantial 

uncertainties about the costs, benefits, and risks of GE given the present state of scientific 

understanding.8 There is also uncertainty in our understanding of the climate, in particular over the 

climate sensitivity parameter, which captures by how much temperature changes due to a doubling of 

CO2 concentrations. We characterize these uncertainties in our analytical model and derive policy 

implications. We also use a stochastic version of DICE to model uncertainty in geoengineering and in the 

climate system.  

Third, in our models (analytical and numerical) we explicitly distinguish between damages from 

carbon concentrations and damages from temperature. Unlike mitigation or abatement, solar 

geoengineering reduces temperatures without reducing carbon concentrations, either atmospheric or 

oceanic. Both types of carbon stocks may lead to damages, even if temperatures are brought back to 

preindustrial levels. For instance, ocean acidification may deplete corals and fisheries, and atmospheric 

carbon may affect precipitation patterns. Other papers have mentioned this issue, but to our knowledge 

                                                           
7 Barrett (2014) considers four different options for the time path of GE, and Keith (2013) recommends starting at 
a low level of GE and gradually increasing its use, but neither uses an IAM to generate optimal policy. 
8 The National Academy of Sciences has recently issued a report providing a technical evaluation of GE proposals, 
jointly sponsored by the NOAA, the CIA, NASA, and the Energy Department (National Research Council 2015).  
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ours is the first to incorporate it into a theoretical model or numerical simulation of geoengineering 

policy.  

 We find that GE unambiguously lowers the optimal level of abatement and the optimal price of 

carbon in the model. The degree to which it does so is sensitive to parameter values. In our base case 

specification, the optimal level of abatement is up to 25 percentage points lower than the optimal level 

without GE, and the elimination of all carbon emissions is delayed by five decades. Ignoring GE can 

increase overall costs of climate change by one-half to one percent of GDP. Optimal abatement levels 

are less sensitive to parameter values and to uncertainty in climate sensitivity than are optimal GE 

levels. The degree to which damages from climate change arise from carbon directly, rather than from 

temperature, substantially affects optimal GE deployment; if a high fraction of damages are from 

carbon, then GE is used less intensively.  

 The next section of the paper introduces our theoretical model, which provides the framework 

for our inclusion of GE into the DICE model. Section 3 describes how we include GE in the DICE model 

and how it is calibrated. Section 4 presents our simulation results, and section 5 concludes. 

 

II. Theoretical Model 

 Consider a representative agent who has access to an endowment of a fixed stock of capital 𝑘. 

That capital can be allocated in three ways: towards production 𝑘𝑝, towards abatement 𝑘𝑎, or towards 

geoengineering 𝑘𝑔. The resource constraint is thus 𝑘 = 𝑘𝑝 + 𝑘𝑎 + 𝑘𝑔. Allocating capital towards 

production yields a level of potential output 𝑓(𝑘𝑝), with 𝑓′ > 0 and 𝑓′′ < 0. This is potential output, 

because actual output is reduced due to damages from pollution 𝑥. Actual output (all of which is 

consumed) is 𝑦 = 𝑐 = 𝑓(𝑘𝑝) (1 − 𝑑(𝑥; 𝑘𝑔)). The damage function 𝑑 represents the fraction of 

potential output that is lost because of pollution 𝑥, and 𝑑𝑥 > 0, 𝑑𝑥𝑥 > 0 (damages are increasing and 

convex in pollution). Geoengineering 𝑘𝑔 affects damages also, with 𝑑𝑘 < 0 and 𝑑𝑥𝑘 < 0. That is, 
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geoengineering reduces absolute and marginal damages. Pollution 𝑥 is determined by the total capital 

endowment and the fraction abated 𝜇, so that 𝑥 = (1 − 𝜇)𝑘. The fraction abated is a function of 

abatement capital: 𝜇 = 𝑔(𝑘𝑎), where 𝑔′ > 0, 𝑔′′ < 0.  

 The planner's problem is to allocate the capital stock so as to maximize actual output (or 

equivalently maximize a monotone utility function over actual output). That is, 

max
𝑘𝑝,𝑘𝑎,𝑘𝑔

𝑓(𝑘𝑝) (1 − 𝑑(𝑥; 𝑘𝑔)) 

such that 

𝑘 = 𝑘𝑝 + 𝑘𝑎 + 𝑘𝑔 

𝑥 = (1 − 𝑔(𝑘𝑎))𝑘 

 First, consider the constrained solution to this problem that omits GE, or sets 𝑘𝑔 = 0. The 

solution to this constrained problem is analogous to policy recommendations by IAMs that ignore GE. 

The first-order condition for the constrained problem, assuming interior solutions, is 

𝑓′(𝑘𝑝
𝑐)(1 − 𝑑(𝑥𝑐; 0)) = 𝑓(𝑘𝑝

𝑐)𝑘𝑔′(𝑘𝑎
𝑐)𝑑𝑥(𝑥

𝑐; 0),  (1) 

where 𝑘𝑝
𝑐 , 𝑘𝑎

𝑐 , and 𝑥𝑐 indicate solutions to the constrained problem. The left-hand side of equation (1) is 

the marginal cost of an additional unit of abatement, which is the foregone marginal output that could 

have been produced by allocating to production 𝑘𝑝 instead of abatement 𝑘𝑎. The right-hand side is the 

marginal benefit of an additional unit of abatement, which is the reduction in damages caused by 

pollution from the extra unit of abatement. In a decentralized economy, the right-hand side of this 

equation is the optimal pollution tax, i.e. the social cost of carbon, when GE is ignored (as it is in many 

IAMs). 

 Next, consider the unconstrained problem where GE is not fixed at zero. This solution is 

characterized by two first-order conditions: 

𝑓′(𝑘𝑝
𝑜𝑝𝑡
) (1 − 𝑑(𝑥𝑜𝑝𝑡; 𝑘𝑔

𝑜𝑝𝑡
)) = 𝑓(𝑘𝑝

𝑜𝑝𝑡
)𝑘𝑔′(𝑘𝑎

𝑜𝑝𝑡
)𝑑𝑥(𝑥

𝑜𝑝𝑡; 𝑘𝑔
𝑜𝑝𝑡
) (2) 
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𝑑𝑥(𝑥
𝑜𝑝𝑡; 𝑘𝑔

𝑜𝑝𝑡
)𝑔′(𝑘𝑎

𝑜𝑝𝑡
)𝑘 = −𝑑𝑘(𝑥

𝑜𝑝𝑡; 𝑘𝑔
𝑜𝑝𝑡
)    (3) 

where 𝑘𝑝
𝑜𝑝𝑡
, 𝑘𝑎
𝑜𝑝𝑡
, 𝑘𝑔
𝑜𝑝𝑡

, and 𝑥𝑜𝑝𝑡 indicate solutions to the unconstrained problem (i.e. the optimal 

levels). Equation (2), as in equation (1) in the constrained case, equates the marginal cost of an 

additional unit of abatement with its marginal benefit. In a decentralized economy, the optimal carbon 

tax (the social cost of carbon) is the right-hand side of equation (2). In equation (3), the left-hand side 

represents the marginal benefit of an additional unit of abatement (divided through by potential output 

𝑓), and the right-hand side represents the marginal benefit of an additional unit of GE.  

 Consider the market for abatement 𝑘𝑎 under both the constrained and unconstrained problem, 

as shown in the top half of Figure 1. The x-axis is the amount of abatement. The line 𝑀𝐶|𝑘𝑔 = 0 is the 

marginal cost of abatement conditional on no GE (𝑘𝑔 = 0); it equals 𝑓′(𝑘 − 𝑘𝑎) (1 −

𝑑 ((1 − 𝑔(𝑘𝑎))𝑘, 0)), which is the left-hand side of equation 1 evaluated at arbitrary 𝑘𝑎. The line 

𝑀𝐵|𝑘𝑔 = 0 is the marginal benefit of abatement with no GE; it equals 𝑓(𝑘 − 𝑘𝑎)𝑘𝑔
′(𝑘𝑎)𝑑𝑥 ((1 −

𝑔(𝑘𝑎))𝑘, 0). The appendix shows that 𝑀𝐶 is increasing and 𝑀𝐵 is decreasing in 𝑘𝑎. Where these are 

equal, their value is the social cost of carbon, conditional on no GE, as indicated by 𝑆𝐶𝐶|𝑘𝑔 = 0; this is 

the price determined by equation 1.  

 Allowing for GE affects the marginal benefit of abatement, and intuition suggests that the 

marginal benefit curve allowing for GE will be lower than the marginal benefit curve with no GE.  GE 

reduces the damages from a unit of emissions, and therefore it reduces the marginal benefits of 

abatement. This intuition is verified in the appendix, and thus the curve 𝑀𝐵|𝑘𝑔
𝑜𝑝𝑡

, which is the marginal 

benefit of abatement conditional on the optimal level of GE, is drawn in Figure 1 lower than 𝑀𝐵|𝑘𝑔 = 0. 

Assuming that introducing GE does not change the marginal cost of abatement (an incorrect 

assumption, as it turns out, but one that we will maintain for now to clarify the point of Figure 1), then 
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the social cost of carbon condition on optimal GE is lower than the social cost of carbon ignoring GE. 

Figure 1 demonstrates the deadweight loss in the abatement market (the triangle labeled DWL) from 

setting a carbon tax that ignores GE. 

 Allowing for GE also affects the marginal cost curve, though in Figure 1 we have ignored the fact 

that 𝑀𝐶|𝑘𝑔 = 0 ≠ 𝑀𝐶|𝑘𝑔
𝑜𝑝𝑡

. The appendix shows that 𝑀𝐶|𝑘𝑔 = 0 < 𝑀𝐶|𝑘𝑔
𝑜𝑝𝑡

. This is because, for any 

abatement level, allowing GE makes the damages from pollution lower, and thus potential output 

higher, and therefore the marginal cost of abatement (foregone output) higher. But, the appendix also 

argues that the difference between the two marginal cost curves is likely to be small, unlike the 

difference between the two marginal benefit curves, which is why we have ignored the change in MC in 

Figure 1. Since the marginal cost under optimal GE is (slightly) higher than under no GE, the social cost of 

carbon under optimal GE will be closer to the social cost of carbon ignoring GE than shown in Figure 1 

ignoring the change in marginal costs. But, the deadweight loss from ignoring GE could be higher or 

lower than that shown in Figure 1 (although the quantity of abatement will be lower, the cost of each 

unit over the optimal is higher). 

 The bottom half of Figure 1 shows that in equilibrium, the marginal benefit of an additional unit 

of abatement capital will equal the marginal benefit of an additional unit of geoengineering. The left-

hand side is the market for abatement, while the right-hand side presents the market for 

geoengineering. The curves in blue represent the marginal costs and benefits of geoengineering, at a 

constant level of abatement (equal to 𝑘𝑎
𝑐). As 𝑘𝑔 increases and geoengineering in implemented, the 

optimal level of abatement 𝑘𝑎 decreases, so emissions increase. Thus, the marginal benefit of each unit 

of geoengineering increases, since more pollution is allowed and temperatures are warmer without 

geoengineering. This is represented by an upward shift in the marginal benefit curve to the red curve. In 

equilibrium, the marginal benefits of geoengineering (on the right half) will increase just enough and the 

marginal benefits of abatement (on the left half) will decrease just enough so that the optimal quantity 
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of each choice variable is such that the marginal benefits are equal across the two markets. Extending 

the new optimal carbon price across the graphs will intersect the equilibrium in the geoengineering 

market.  

 

II.A. Uncertainty 

 We now amend the model to include uncertainty.  Suppose that there are two random variables 

that affect the damage function d: call them 𝜃𝑥 and 𝜃𝑔.  Intuitively, 𝜃𝑥 represents uncertainty about the 

relationship between pollution and damages.  For instance, this might represent uncertainty about the 

climate sensitivity parameter – how much temperature would increase after a doubling of atmospheric 

carbon.  This uncertainty 𝜃𝑥 could also represent uncertainty over how temperatures affect the 

economy.  The other shock, 𝜃𝑔, represents uncertainty over geoengineering – either its implementation 

costs, its efficacy in controlling temperatures, or its negative side effects.  Realistically, the third of these 

is the major source of uncertainty regarding GE.   

Mathematically, we assume that the variance of either of these shocks affects marginal 

damages in the following way: 
𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)
> 0 and 

𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑔)
> 0.  A higher variance in 𝜃𝑥 means that the 

expected marginal damages from pollution are higher.  This could arise from the damage function itself, 

or it could reflect risk aversion in preferences, where the damage function 𝑑 incorporates that risk 

aversion.  A higher variance in 𝜃𝑔 increases 𝑑𝑘, that is, it makes it less negative – so it reduces the 

marginal benefits from geoengineering.  Again, this could arise from the form of the damage function 

itself, or it could reflect risk aversion.  We also assume that 
𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
> 0 and 

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑔)
> 0: both of these 

shocks affect the expected level of damages, not just the derivative.  We make no assumptions over the 

"cross" effect of the shocks: 
𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑔)
 or 

𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑥)
. 
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 Given these uncertainties, the planner chooses an allocation of production, abatement, and 

geoengineering to maximize expected net output.  The implicit function theorem can be used on the 

two first-order conditions to present comparative static results on how uncertainty in either pollution 

damages or in geoengineering effectiveness affects optimal policy.  The details of the derivation are 

presented in the appendix; here we present the results. 

 The appendix shows that 

𝜕𝑘𝑎
𝜕𝑉𝑎𝑟(𝜃𝑥)

=
1

𝐷𝑒𝑡
{[𝑓′(𝑘𝑝)(𝑔

′(𝑘𝑎)𝑘
𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑔
+
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔
)]

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
+ 𝐴

𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)
+ 𝐵

𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑥)
} 

Here 𝐷𝑒𝑡 is the determinant of the Jacobian matrix of the first-order conditions and is positive, and 𝐴 

and 𝐵 are positive terms defined in the appendix.  The second and third terms in the brackets are signed 

and easily interpretable.  Since uncertainty over climate damages increases the expected marginal 

damages from pollution (
𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)
> 0), it increases optimal abatement.  The increase in the uncertainty 

of pollution damages makes abatement more attractive.  If uncertainty over climate damages also 

increases 𝑑𝑘 – i.e. reduces the marginal benefits from GE – then through this channel it also increases 

optimal abatement.  The first term in the above expression, which is multiplied by 
𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
, has 

ambiguous sign.  Its first component, 𝑔′(𝑘𝑎)𝑘
𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑔
, is negative.  The extent to which geoengineering 

reduces the marginal damages from pollution – 𝑑𝑘𝑥 – means that climate uncertainty's effect on total 

expected damages serves to reduce optimal abatement.  This is because more geoengineering will be 

employed, and the more that GE reduces marginal damages from pollution, the less abatement is 

needed.  The second component of the coefficient on 
𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
, 
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔
, is positive so long as 𝑑𝑘𝑘 > 0 – 

that is, the marginal benefits of geoengineering are decreasing.  Since the uncertainty over climate 

increases expected damages, increased use of GE will be less effective and so more abatement will need 

to be used to compensate, hence this effect makes 
𝜕𝑘𝑎

𝜕𝑉𝑎𝑟(𝜃𝑥)
 positive. 
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 Also, the appendix shows that 

𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑥)
=

1

𝐷𝑒𝑡
{[𝑓′(𝑘𝑝)(−𝑔

′′(𝑘𝑎)𝑘𝐸[𝑑𝑥] − 𝑔
′(𝑘𝑎)𝑘

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
−
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
)]

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
− 𝐶

𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)

− 𝐷
𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑥)
} 

Here the terms 𝐶 and 𝐷 are both positive and defined in the appendix.  As with the equation for 
𝜕𝑘𝑎

𝜕𝑉𝑎𝑟(𝜃𝑥)
 

above, here the second and third terms are unambiguous.  Since uncertainty over climate increases 

marginal damages from pollution, this effect decreases optimal GE – instead more abatement is used 

instead of GE.  If uncertainty over climate increases 𝑑𝑘 (reduces marginal benefits from GE), then this 

reduces optimal GE because GE is less effective.  The first term, multiplied by 
𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
, has ambiguous 

sign.  The first two components, −𝑔′′(𝑘𝑎)𝑘𝐸[𝑑𝑥] − 𝑔
′(𝑘𝑎)𝑘

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
, are positive.  As expected damages 

are higher with more climate uncertainty, this will lead to more optimal GE, since marginal damages are 

positive (𝐸[𝑑𝑥]) and increasing (
𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
).  The remaining component multiplying 

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
, −

𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
, is 

negative since 𝑑𝑘𝑥 < 0.  Because increased use of GE will decrease marginal damages from pollution, 

there is an effect making optimal use of GE lower – less is needed since marginal damages are lower. 

 Comparing the two sets of ambiguous terms multiplying  
𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
 in both of the above equations 

yields the following conclusion: if the cross-partial derivative 𝑑𝑘𝑥 is not too large in magnitude, then 

higher uncertainty in climate damages will increase use of both abatement and GE.  That is, there is a 

scale effect since expected damages are larger, so it is optimal to use more of both tools available.  The 

negative cross-partial derivative 𝑑𝑥𝑘 means that each of the two policy tools (abatement and GE) makes 

the other less effective, and thus this effect serves to reduce the use of each.   

 The equations for the effect of uncertainty in geoengineering on optimal policy are identical to 

the equations above, except with partial derivatives with respect to 𝑉𝑎𝑟(𝜃𝑔): 
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𝜕𝑘𝑎

𝜕𝑉𝑎𝑟(𝜃𝑔)
=

1

𝐷𝑒𝑡
{[𝑓′(𝑘𝑝)(𝑔

′(𝑘𝑎)𝑘
𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑔
+
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔
)]

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑔)
+ 𝐴

𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑔)
+ 𝐵

𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑔)
} 

𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑔)
=

1

𝐷𝑒𝑡
{[𝑓′(𝑘𝑝) (−𝑔

′′(𝑘𝑎)𝑘𝐸[𝑑𝑥] − 𝑔
′(𝑘𝑎)𝑘

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
−
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
)]

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑔)
− 𝐶

𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑔)

− 𝐷
𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑔)
} 

As before, there are unambiguous effects from how uncertainty affects the first derivatives.  Since 

𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑔)
> 0 (uncertainty about GE reduces expected marginal benefits of GE), more uncertainty about 

GE leads to less GE and more abatement; GE is a less-attractive option, and abatement is a substitute for 

it.  Note that 𝑉𝑎𝑟(𝜃𝑔) could also be taken to represent uncertainty about damages from GE; for 

example, the possibility that GE will damage the ozone layer.  In fact, it is this aspect of 𝑑𝑘 that 

motivates most of the uncertainty around GE technology.  We show that the more uncertainty over this, 

the less GE will be used at the optimum. 

Our results follow from the simplicity of our model, and it may be the case that in a model with 

more realistic features this result changes.  For this reason we incorporate uncertainty over both climate 

damages and GE into our numerical simulation model below. 

 

II.B. Decomposition of Climate Damages  

 We now amend the model to consider that damages from climate change may occur both from 

temperature changes, which GE addresses, and from carbon concentrations, which GE does not address.  

To model this simply, we separate the damage function into two components, only one of which is 

affected by geoengineering: 𝑑(𝑥; 𝑘𝑔) = 𝜆𝑑𝑑1(𝑥) + 𝑑2(𝑥; 𝑘𝑔).  When 𝜆𝑑 = 0, this becomes the original 

model.  But when 𝜆𝑑 > 0, there is a separate component of damages that cannot be alleviated with GE, 

and so each unit of GE is less effective at reducing damages from pollution.  Damages that occur from 

temperature change, which GE can remedy, are modeled by 𝑑2, and damages from carbon 
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concentrations, which GE cannot remedy, by 𝑑1.  We conduct comparative statics on how this value 

affects optimal abatement and GE policy. When the fraction of climate damages from carbon, rather 

than from temperature, increases, 𝜆𝑑 will increase. 

 The appendix shows that  

𝜕𝑘𝑎
𝜕𝜆𝑑

= 𝐶 ∙ [𝑔′(𝑘𝑎)𝑘𝑑2𝑥𝑘 + 𝑑2𝑘𝑘] 

𝜕𝑘𝑔

𝜕𝜆𝑑
= 𝐶 ∙ [(−𝑔′′(𝑘𝑎)𝑘𝑑2𝑥 + 𝑔

′(𝑘𝑎)
2𝑘2𝑑2𝑥𝑥 + 𝑘𝑔

′(𝑘𝑎)𝑑2𝑥𝑘)] 

The constant 𝐶 is defined in the appendix and is positive.   

 In the equation for 
𝜕𝑘𝑎

𝜕𝜆𝑑
, the first term in brackets is negative, and the second term is positive.  As 

more climate damages come from carbon rather than temperature (higher 𝜆𝑑), the second (positive) 

term reflects the fact that more abatement is warranted, since it is the only approach that addresses 

carbon.  In the equation for 
𝜕𝑘𝑔

𝜕𝜆𝑑
, the first two terms in brackets are positive, and the third term is 

negative. As more abatement is used because of a higher 𝜆𝑑, there is less need for GE to alleviate 𝑑2 

because the cross-partial derivative is negative. This is captured in the third (negative) term.  However, 

in each of the above equations there is a term or terms of opposite sign to the above intuition.  The 

negative term in 
𝜕𝑘𝑎

𝜕𝜆𝑑
 reflects the fact that, as more abatement is employed to counter increased 

damages from carbon (𝑑1), the damages from temperature (𝑑2) are less intensive and therefore 

somewhat less abatement may be needed.  The positive terms in 
𝜕𝑘𝑔

𝜕𝜆𝑑
 reflect the fact that an increase in 

𝜆𝑑 increases the magnitude of climate change damages overall, and some of that can be alleviated with 

increased GE.  This effect will be larger as 𝑑2𝑥 and 𝑑2𝑥𝑥 are larger; that is, as marginal damages from 

temperature are greater and increasing.   
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 The model in this section provides intuition but omits many important details. It is a static 

model, though climate change is inherently dynamic.  It has no scientifically-based specification of how 

emissions affect the climate over time. For these reasons and many others, in the following section we 

incorporate GE into an IAM that includes these features. Though the output of the IAM is difficult to 

interpret intuitively (it is a "black box"), the intuition developed in this section will be carried over to the 

results from the IAM simulations. 

 

III. Geoengineering and DICE 

 The dynamic integrated climate-economy (DICE) model by William Nordhaus is an IAM designed 

to be used to solve for optimal GHG abatement policy and calculate the social cost of carbon. It includes 

a representative-agent economic model with an endogenous capital stock and an exogenous level of 

technological growth in total factor productivity. Carbon emissions are a byproduct of production but 

can be reduced through expenditure on abatement. The climate component of the model includes 

several equations describing the dynamic interaction between carbon concentrations in several layers: 

the atmosphere and upper and lower oceans. The atmospheric carbon concentration affects the 

atmosphere’s radiative forcing; that is, the difference between the amount of heat energy absorbed by 

the Earth and that radiated back into space. The human-caused change in radiative forcing is ultimately 

what affects atmospheric temperatures. Finally, the climate and economy sections of the model are 

integrated in that increases in temperature cause reductions in total economic output. A social welfare 

function is defined over consumption and output, and the model can be run to solve for optimal (i.e. 

welfare-maximizing) carbon abatement trajectories. Given marginal abatement costs, the social cost of 

carbon is a byproduct of the model’s output. A time period in the 2007 version of the model is one 

decade, and the model is typically run over several dozen periods (hundreds of years). 
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 The DICE model and its results have been refined over the years, and summaries of the model’s 

equations and results are available in Nordhaus (2008) as well as Nordhaus’s personal webpage.9 A key 

takeaway from the model runs are that the social cost of carbon in the present is positive (typically 

around $30 per ton of CO2), and it is gradually increasing over time to reflect the increase in carbon 

concentrations and thus in marginal damages per ton of carbon.  

 IAMs like DICE have been criticized. Pindyck (2013) argues that they tell us "very little" and are 

"close to useless" because so many of the calibrated parameter values are ad hoc with little empirical 

foundation. This is demonstrated by the fact that the policy recommendations can be so sensitive to 

arbitrarily chosen parameter values, for instance the discount rate. Because our numerical analysis relies 

on DICE, it is subject to these criticisms. However, even if one accepts these critiques and is skeptical of 

IAMs, we argue that our analysis has merit. Though the point estimates of optimal policy paths should 

be interpreted with caution, how they vary with parameter values (i.e. the sensitivity analysis) still 

provides insight. Further, thought the point estimates may be problematic, the simulations demonstrate 

that it is potentially important to consider GE in optimal policy design, with or without IAMs. In these 

respects, the use of DICE can be seen as another argument in favor of Pindyck's (2013) and others' 

critiques of IAMs.  

 Here, we do not present all of the equations in the DICE model. Instead, we present the 

equations that we have modified to account for the possibility of geoengineering. We have modified 

DICE in the following five ways. First, while the only choice or action variable in the original DICE model 

is carbon abatement, we add a second choice variable to reflect the choice of the intensity of 

geoengineering. Second, there is a cost to implementing geoengineering, analogous to the cost of 

abatement. Third, we add potential damages from geoengineering, analogous to the original model's 

specification of damages from climate change. Fourth, the benefits of geoengineering are modeled as 

                                                           
9 http://www.econ.yale.edu/~nordhaus/homepage/  

http://www.econ.yale.edu/~nordhaus/homepage/
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directly modifying the radiative forcing equation. Fifth, we decompose the damages from climate 

change so that they depend directly not just on temperature, but also on atmospheric and on ocean 

carbon concentrations. In the following five paragraphs we describe in detail each of these 

modifications. 

 The original DICE model's sole choice variable is abatement intensity 𝑎, which can take values 

between zero and one. When 𝑎 = 0, there is no abatement, and 𝑎 = 1 implies that all carbon emissions 

are abated (no emissions). Net carbon emissions are 𝐸𝑛𝑒𝑡 = (1 − 𝑎)𝐸𝑔𝑟𝑜𝑠𝑠. We add a second choice 

variable for the intensity of geoengineering, 𝑔 (and we maintain the choice of abatement). When this 

variable 𝑔 equals zero, this represents no geoengineering. When 𝑔 = 1, this represents "full" 

geoengineering, i.e. fully offsetting the warming effects from increased carbon concentrations 

(described in more detail below). However, unlike abatement intensity 𝑎, geoengineering intensity 𝑔 

could take a value larger than 1, representing more than fully offsetting temperature increases from 

climate change.  

 In the original DICE model, the cost of abatement is modeled as a power function of 𝑎: 

𝐴𝑏𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 = 𝜃1(𝑡)𝑎
𝜃2. The exponent 𝜃2 is 2.8 in the base case, indicating convex costs. The 

coefficient 𝜃1(𝑡) decreases with time, halving after about 100 years (10 periods) to reflect technological 

advancement in abatement. The outcome variable 𝐴𝑏𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 is the fraction of gross output that 

is sacrificed for abatement. For instance, in period 1 where 𝜃1(1) = 0.0561, the cost of abating 10 

percent of gross emissions would be 0.009% of gross output (0.00009 = 0.0561 × 0.102.8). We define 

geoengineering costs analogously as a fraction of gross output: 𝐺𝑒𝑜𝑒𝑛𝑔𝐶𝑜𝑠𝑡 = 𝐺𝑐𝑜𝑒𝑓𝜃𝐺𝐸(𝑡)𝑔
𝜃3. To 

calibrate this cost function of aerosol-sulfate-based climate engineering, we use two sources.10 First, 

                                                           
10 There are alternatives solar radiation management technologies other than sulfate aerosols, though sulfate 
aerosols are likely the most cost-effective and dependable technology. Marine cloud brightening (MCB) would 
increase reflectivity by injecting seawater particles into clouds (Latham et al. 2014b). Cirrus cloud seeding would 
increase outgoing radiation by reducing cirrus cloud cover (Storelvmo et al. 2014).  
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doing well-informed back-of-the-envelope calculations, Crutzen (2006) estimates the amount of sulfur 

needed to reduce the radiative forcing equivalent to doubling CO2 to be equal to 5.3 Mt of sulfur. That 

is, we can reduce a radiative forcing equivalent to 4W/m2 by deploying 5.3 Mt S. The second piece of 

information is related to the costs of delivering sulfur at the distance required to have a global impact. 

Crutzen (2006) has estimated something in the order of $25 Billion for 1 Mt S. Recent estimates, using 

new aircraft designs, estimated the costs at $3 Billion for 1 Mt S or $8 Billion to deliver 5Mt S (McClellan 

et al. 2012). These two pieces of data imply that reducing the radiative forcing equivalent to a doubling 

of CO2 costs between $8 Billion and $125 Billion. Furthermore, we assume that particles are required at 

an increasing rate (Rasch et al. 2008), and for simplicity the costs are quadratic (less convex than 

mitigation, but linear costs are unrealistic due to coagulation of particles and other such processes). GDP 

in 2005 was $46 Trillion, so the lowest estimate of $8 Billion is only 0.02% of global GDP and the highest 

estimate is 0.27% of global GDP. (Compare this with the 3% in terms of mitigation costs associated with 

the optimal policy in DICE.) Because geoengineering is a fraction in our model, then reducing a doubling 

of CO2 to nothing is equivalent to setting 𝑔 = 1. Thus our geoengineering cost estimate is 𝜃𝐺𝐸(𝑡) =

0.0027 and 𝜃3 = 2. We set 𝜃𝐺𝐸(𝑡) constant over time, so that unlike with abatement technology there 

is no learning or improvement in geoengineering technology. We also include the coefficient 𝐺𝑐𝑜𝑒𝑓 to 

represent a scaling of geoengineering costs. In the base case we set 𝐺𝑐𝑜𝑒𝑓 = 1, and we will vary this in 

sensitivity analysis. By using the high cost estimate and not allowing technological growth in GE 

technology, this base case value for GE costs is very conservative, that is, biased against deployment of 

geoengineering. Keith et al. (2010) argues that "long-established estimates" show that solar radiation 

management GE can offset climate change at least 100 times more cheaply than the cost of abatement. 

 In addition to these implementation costs of geoengineering, there may also be damages from 

geoengineering. For instance, sulfates are expected to exacerbate ozone depletion (Heckendorn et al. 

2009). Precipitation could be drastically reduced (Ferraro et al. 2014, Robock et al. 2008). The sulfates 
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injected into the stratosphere may condense and fall back to the atmosphere, contributing to acid rain 

(though Kravitz et al. (2009) find that this effect will be insubstantial). We model these damages in the 

same way that the original DICE model models damages from climate change – as a factor of total 

potential output that is unrealized due to these damages (and of course we keep damages from climate 

change as well). In the original DICE, the damage function is Ω(𝑡), where output 𝑄𝑛𝑒𝑡 =
1

1+Ω(𝑡)
𝑄𝑔𝑟𝑜𝑠𝑠 

and Ω(𝑡) = 𝜓1𝑇𝐴𝑇(𝑡) + 𝜓2[𝑇𝐴𝑇(𝑡)]
2. The damage function is a function of atmospheric temperature at 

time 𝑡, 𝑇𝐴𝑇(𝑡), and the 𝜓s are calibrated coefficients. We amend this by also allowing for 

geoengineering 𝑔 to directly reduce total output. In addition to the Ω(𝑡) term representing damages 

from climate change, we also include damages from geoengineering: 𝑄𝑛𝑒𝑡 =
1

1+Ω(𝑡)
×

1

1+𝜈𝐺𝑔
2 × 𝑄𝑔𝑟𝑜𝑠𝑠. 

The coefficient 𝜈𝑔 represents how damages from geoengineering scale net output. In our base case, we 

set 𝜈𝑔 = 0.03, which implies that geoengineering at full intensity (𝑔 = 1) leads to damages that amount 

to 3% of gross output. This is similar in scale to the damages from climate change damages in DICE 

associated with about 6 degrees Celsius of warming, thus this damage estimate (like the cost estimate 

also) is very conservative (i.e. biased against geoengineering).  

 The purpose of engaging in solar geoengineering is to alter the radiative forcing of the Earth's 

atmosphere. Radiative forcing is the difference in net heat loss due to anthropogenic GHG emissions 

relative to preindustrial levels. In the DICE model, the radiative forcing equation is 

𝐹(𝑡) = 𝜂{log2 [
𝑀𝐴𝑇(𝑡)

𝑀𝐴𝑇(1750)
]} + 𝐹𝐸𝑋(𝑡) 

It is a function of the ratio of the current atmospheric carbon stock (𝑀𝐴𝑇(𝑡)) to the pre-industrial 

atmospheric carbon stock (𝑀𝐴𝑇(1750) = 596.4 Gt C, equivalent to about 280 ppm CO2), exogenous 

forcing 𝐹𝐸𝑋(𝑡) due to anthropogenic emissions of GHGs other than CO2 (assumed exogenous in DICE), 

and a calibrated radiative forcing parameter 𝜂. Then, atmospheric temperature 𝑇𝐴𝑇(𝑡) is affected by 

radiative forcing through the following equation: 
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𝑇𝐴𝑇(𝑡) = 𝑇𝐴𝑇(𝑡 − 1) + 𝜉1{𝐹(𝑡) − 𝜉2𝑇𝐴𝑇(𝑡 − 1) − 𝜉3[𝑇𝐴𝑇(𝑡 − 1) − 𝑇𝐿𝑂(𝑡 − 1)]}. 

This function also depends on the lower ocean temperature in the previous period 𝑇𝐿𝑂(𝑡 − 1). A higher 

value of radiative forcing 𝐹(𝑡) (which is caused by higher atmospheric carbon 𝑀𝐴𝑇(𝑡)) leads to higher 

atmospheric temperatures 𝑇𝐴𝑇(𝑡) all else equal. Our modification is to the radiative forcing equation: 

𝐹(𝑡) = (𝜂{log2 [
𝑀𝐴𝑇(𝑡)

𝑀𝐴𝑇(1750)
]} + 𝐹𝐸𝑋(𝑡)) (1 − 𝜙𝑔(𝑡)) 

The variable 𝑔(𝑡) is the extent of geoengineering in period 𝑡, and 𝜙 is a positive parameter that 

captures the leverage of geoengineering. Higher 𝜙 means less geoengineering needs to be implemented 

to achieve a given level of radiative forcing reduction. At a value of 1, radiative forcing 𝐹 is reduced to 

zero (regardless of the carbon stock), completely eliminating anthropogenic climate change effects on 

temperature. 

 Our final change to the DICE model is a modification of the damage function from climate 

change (not from geoengineering). In DICE, climate change damages are a function of temperature only: 

Ω(𝑡). However, climate change damages are expected to come from more than just temperature 

changes. precipitation is predicted to change, independent of the temperature change due to global 

warming. Bony et al. (2013) find that atmospheric carbon increases account for about half of predicted 

tropical circulation change and a large fraction of precipitation changes from climate change. The 

acidification of oceans cause damages too. There is also the possibility that increased atmospheric 

carbon concentrations may have benefits to agricultural productivity, holding temperature and 

precipitation constant (Pongratz et al. 2012). Because geoengineering decreases temperatures but does 

not change the carbon stock in either the atmosphere or the oceans, it is crucial to decompose the 

damages from climate change into damages directly from temperature and damages from carbon 

stocks. Thus, we modify DICE's damage function Ω(𝑡) to be a function of temperature 𝑇𝐴𝑇(𝑡) as well as 

atmospheric carbon 𝑀𝐴𝑇(𝑡) and upper ocean carbon 𝑀𝑈𝑃(𝑡):  

Ω(𝑡) = 𝜓𝑇[𝑇𝐴𝑇(𝑡)]
2 + 𝜓𝑂[𝑀𝑈𝑃(𝑡) − 𝑀𝑈𝑃(1750)]

2 + 𝜓𝐴𝑇[𝑀𝐴𝑇(𝑡) − 𝑀𝐴𝑇(1750)]
2 
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The temperature 𝑇𝐴𝑇 is already defined as degrees Celsius relative to preindustrial (1750) average 

temperature, but the other two components of damages are not, so we calculate damages by 

subtracting the preindustrial levels, and we allow damages to be a quadratic function of the deviation 

from preindustrial levels. We calibrate the new damage coefficients 𝜓 in the following way. We impose 

that the original DICE model’s total climate change damages in the initial period is correct, but we 

allocate some of those damages to be directly from temperature, some from ocean carbon 

concentrations, and some from atmospheric carbon concentrations. Brander et al. (2012) suggest that 

find that damages from ocean acidification alone can account for 0.14% to 0.18% of gross GDP. Direct 

damages from atmospheric carbon concentrations are difficult to calibrate. Absent its effect on 

temperature, atmospheric carbon is expected to affect precipitation patterns, which may cause 

damages.(Allen 2002, Bala et al 2008) Furthermore, atmospheric carbon may provide a benefit to 

agriculture by promoting more robust crop growth. (Matthews et al. 2005)  Therefore, we begin by 

assuming that, of the total damages from climate change in the initial period calibrated in DICE, 80% is 

directly a function of atmospheric temperature, 10% is a function of atmospheric carbon, and 10% is a 

function of upper ocean carbon. By imposing that the total damages from climate in the initial period 

are identical to those in DICE, this allows us to calibrate 𝜓𝑇, 𝜓𝑂, and 𝜓𝐴𝑇. Specifically, in the initial 

period in DICE, climate change damages amount to 0.15157% of gross output (Ω(𝑡) = 𝜓𝑇2 = 2.8388 ×

10−3 × 0.73072). We set 80% of this total a function of temperature, yielding 𝜓𝑇 = 0.00227 (𝜓𝑇 ×

0.73072 = 0.80 × 0.0015157). And similarly we can calibrate the other damage parameters. 

 These are the five areas in which we modify DICE to include geoengineering and its costs, 

benefits, and damages. We have described the base case parameterizations that we use in our model, 

but we will also conduct a very broad range of sensitivity analyses, since many of the parameters are 

difficult to quantify.  
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 Other studies have also modified DICE to include geoengineering, and here we compare our 

modifications to these other papers’. Table 1 summarizes this comparison. All of the papers allow solar 

GE to directly modify the radiative forcing equation; our paper is the only one to allow GE to enter as a 

multiplicative factor rather than a linear additive term. This is not a major difference, since in either case 

the substantive effect is to reduce the value of 𝐹(𝑡). We choose a multiplicative factor for ease of 

interpretation: the policy variable will be between zero and one, representing the fraction of total 

anthropogenic forcing that is eliminated via solar GE. The next column notes that all of the previous 

studies except one allow for damages from solar GE (apart from their implementation costs). We, like 

Gramstad and Tjotta (2010), allow for these damages to be a quadratic function of GE intensity and to 

be a multiplier on gross output; in this way they are modeled analogously to damages from climate 

change. Next, only this paper and Goes et al. (2011) and Bickel and Agrawal (2013) modify DICE's 

damages from climate change function. The other two papers allow for damages to be a function both 

of temperature and of the rate of temperature change, based on the fact that solar GE can lead to rapid 

temperature changes (Matthews and Caldeira 2007). Their damage function is taken from Lempert et al. 

(2000). We are more direct in that we allow for damages to be a function of more than just 

temperature; this innovation is unique to this paper. 

 There are other modifications as well. Bickel and Lane (2009) is the only paper that also 

considers carbon capture GE, and Goes et al. (2011) and Bickel and Agrawal (2013) make several other 

modifications, including using a different climate model altogether.  

A unique contribution of this paper is to treat the underlying uncertainty in the climate system 

by adopting a stochastic optimization, rather than conventional sensitivity analyses or Monte Carlo (MC) 

simulation. The advantage of this approach is that unlike sensitivity analysis, it incorporates the prior 

knowledge about probability distributions of uncertain parameters into the solution method. Moreover, 

although it features a similar random sampling as in MC simulation, the numerical results are used to 
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develop the optimal strategy rather than demonstrating the range of possible outcome. The optimal 

strategy then can be used to produce the prediction for any new realization of the uncertain parameter. 

This is the key advantage of stochastic optimization techniques over conventional MC simulation: in 

stochastic optimization (or Reinforcement Learning in computer science language) the agent can update 

its optimal decision in face of uncertainty based on a large (finite) number of observations of random 

realizations of uncertain parameter and outcome but in MC simulation. The other GE DICE papers 

consider sensitivity analyses, but they do not model stochastic parameters. There are several papers 

including Baker and Solak (2011) and Kolstad (1996) that had modified DICE to include stochastic 

parameters, but without GE. There are several other studies that have used different approximation 

techniques to address the uncertainty in the DICE model framework. Kelly and Kolstad (1999) used 

neural network approximations for obtaining flexible functional form of the value function. 

Oppenheimer et al. (2008) discretized the uncertainty over climate sensitivity and solved the stochastic 

DICE model in discrete deterministic stages. Webster et al. (2012) used two parametric and non-

parametric methods to approximate the value function. Cai et al. (2014) applied Chebyshev polynomial 

approximation for value function estimation. In this paper we consider continuous state and probability 

spaces in our model and adopt a unique stochastic approximation technique for finding the optimal 

strategy in the face of uncertainty in the climate system and GE deployment. We do not “invent” a new 

approximation function and we use the already calculated functions within the model as building blocks 

of our value function approximation. This reduces the number of tunable parameters and substantially 

limits the subsequent optimal search domain. Furthermore, this algorithm is intuitive in the sense that it 

forecast a limited number of steps ahead given the current realization of the uncertain parameter and 

use this as an insight to make a prediction about the values of future states.  

The model is solved for optimal policy using the two-step-ahead approximation method 

described in Shayegh and Thomas (2015). This algorithm was originally developed to find the optimal 
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solution for the stochastic case of uncertainty in the climate sensitivity parameter in DICE. The 

approximation technique was tested and tuned in the deterministic case and then applied to the 

stochastic model. The algorithm works as follows: at each time step 𝑡, the decision maker is projecting 

the future values of uncertain variables for the next two steps. At any specific state the value function is 

approximated by projecting the values of states in the next two time periods. The values of the two 

projected states are calculated under a deterministic forecast and brought back to the present time 

using an artificial and tunable discount rate. These values reflect the social utility under the 

deterministic assumption and are used to construct the value function of the current state. The optimal 

action (abatement, geoengineering, etc.) is found by maximizing this value function. The algorithm starts 

at time 𝑡 = 1 and progress until the last time step. In order for the model to update the decision rule for 

taking optimal actions, we need to find the best set of parameters for the value function approximation. 

At each iteration, assuming a constant set of parameters, the value functions are used to approximate 

future values and derive optimal actions. Once an iteration is complete, we can move backward and 

calculate the “actual” values of future states given such actions. The difference between these actual 

and estimated values (generated from value function approximation) constitutes an error margin for 

that iteration. For the next iteration we update the value function approximation parameters to close 

the gap between actual and estimated values. The algorithm iterates until it “learns” the decision rule 

(i.e. finds the best value function approximation). The iteration ends when the error (difference 

between old and new values) converges to zero.   

Although it is designed for dealing with uncertainty in stochastic problems, the algorithm can be 

used in a deterministic model to approximate the optimal solution. We adopt this algorithm and modify 

it for the case of two actions: abatement and geoengineering. The algorithm is developed in Matlab and 

is available upon request. 

 



26 
 

IV. Simulation Results 

IV.A Baseline Simulations 

In order to understand the way geoengineering affects optimal climate policy, we start by 

analyzing the deterministic case. We compare the outcomes of the baseline scenario to the case of no 

geoengineering; that is, a model that does not allow for geoengineering. The results are presented in 

Figure 2. The first panel shows how abatement is affected when geoengineering is introduced as a viable 

policy instrument. The introduction of geoengineering lowers the level of abatement and delays the 

time when we transition to a clean economy. Once abatement reaches it maximum level, 

geoengineering begins to decline. However, it stays positive for some time because of the lag in the 

effect of emissions on temperature.  The optimal GE deployment is a "ramping-up" policy, starting out at 

low levels and gradually increasing as the damages from climate change increase.  Although GE is 

allowed to take a value greater than 1, its maximum value is just about one-half (i.e. offsetting half of 

the increase in radiative forcing from carbon concentrations).  This is because the benefits from GE are 

traded off against the (substantial) damages. Eventually, GE use declines towards zero, since carbon 

concentrations are reduced.  GE is a substitute for abatement in the short- and medium-run, but 

eventually abatement dominates. 

The introduction of geoengineering, therefore, has important implications for climate outcomes. 

In the next two panels we look at carbon dioxide concentrations and temperature changes. Because of 

the lower level of abatement, carbon dioxide concentrations peak at a higher level and later in the 

presence of geoengineering. Concentrations peak at 1600ppm, relative to the case of no geoengineering 

where concentrations peak at 1400ppm. But with geoengineering, temperature peaks much earlier and 

it is kept at check below the 2 degrees mark. This is the buying-time effect, often cited in the literature, 

where geoengineering keeps the system below deleterious levels of climate change while the 

abatement technology improves enough to eliminate emissions (Keith 2014 and Moreno-Cruz and 
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Smulders, 2007). This is done at the cost of allowing for higher levels of concentrations. Thus, there is a 

tradeoff between carbon damages and temperature damages, as well as geoengineering costs and 

abatement costs.  

The fourth panel in Figure 2 shows that the carbon price is lower when geoengineering is 

introduced; it peaks at a lower level before it starts to decline at the rate of learning by which the costs 

of the backstop technology decline. As the analytical model shows, ignoring geoengineering leads to a 

carbon price that is too high.  After 100 years, the optimal carbon price is about 30% lower than the 

price from the model ignoring geoengineering; after 200 years it is about 45% lower. 

What is remarkable about all these results is that they do not arise because geoengineering is 

very cheap, since we are very conservative about the costs and damages of GE. These results are due to 

the use of geoengineering directly on the radiative forcing. This reduces the inertia of the climate 

system, reducing the amount of abatement needed today to reduce concentrations in the future. Thus, 

by postponing costly abatement to future periods, geoengineering helps to reduce the aggregate costs 

of climate change.  This is demonstrated in the last panel of Figure 2, which plots the costs in 

proportional GDP loss of ignoring geoengineering. For instance, at year 200, this value is 1.52%, 

indicating that net GDP (after accounting for climate damages, geoengineering damages, abatement 

costs, and geoengineering costs) is 1.52% lower in the "no geoengineering" simulation than it is in the 

baseline simulation. This corresponds to the area of deadweight loss from the analytical model in Figure 

1.  

These deterministic simulation results verify what we find in the analytical model – allowing for 

geoengineering reduces the optimal level of abatement, reduces the optimal carbon price, and reduces 

total policy costs. 

 

IV.B Variation in the Composition of Damages – Temperature vs. Carbon 
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 Because GE reduces temperatures without reducing atmospheric or ocean carbon 

concentrations, it cannot completely offset all damages from climate change.  In the baseline 

specification, we assume that 80% of climate damages are directly from temperature, 10% are from 

atmospheric carbon concentrations, and 10% are from ocean carbon concentrations.  In Figure 3, we 

present simulation results where we vary this decomposition of climate damages.  In addition to the 

baseline case, we simulate three other damage decompositions, in each of which damages from 

temperature only account for 50% of climate damages.  The remaining 50% of damages are split 

between atmospheric and ocean carbon 25/25, 40/10, or 10/40. 

 Comparing the baseline case to any of the three alternate decompositions shows that there is 

more geoengineering and less abatement when temperature accounts for a higher fraction of climate 

damages.  GE is less effective relative to abatement when temperature accounts for less damages, and 

so less of it is deployed.  This corresponds to the results from the analytical model that 
𝜕𝑘𝑎

𝜕𝜆𝑑
< 0 and 

𝜕𝑘𝑔

𝜕𝜆𝑑
> 0.  Comparing the three alternative decompositions to each other shows that there is more 

geoengineering and less abatement when ocean carbon concentrations account for a higher fraction of 

damages than do atmospheric carbon concentrations.  Abatement more directly affects atmospheric 

rather than ocean carbon, since the absorption of emitted carbon by the ocean is gradual and slow. If 

atmospheric carbon is more damaging than ocean carbon, more abatement and less GE is needed. 

 The actual composition of damages between ocean carbon, atmospheric carbon, and 

temperature is unknown. In fact, atmospheric carbon may yield benefits from increased agricultural 

productivity. The purpose of this analysis is not to provide policy recommendations but rather to 

demonstrate the importance of research on measuring these distinct damages from climate change and 

incorporating them into assessment models. For mitigation policy, the distinction is unimportant. But 

because GE severs the link between carbon and temperature, the distinction matters. 
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IV.C Uncertainty 

 We now allow DICE to be solved assuming a stochastic distribution of certain parameters. We 

allow the model to converge, and then solve the model 1000 times for different draws of the stochastic 

parameter based on a specified distribution. We then evaluate the mean of the policy outcome variables 

as well as their distribution. We can examine how, for instance, the uncertainty in parameter values 

affects both the mean of policy variables and the distribution of values. We also compare the solutions 

under uncertainty with the solutions in the deterministic case. 

 First, we allow the climate sensitivity parameter to be stochastic. This parameter describes the 

equilibrium temperature change that results from a doubling of atmospheric carbon. In our 

deterministic case this is set to 3. We now allow it to take on a truncated log-normal distribution, 

calibrated based on the IPCC report (IPCC 2013). The lower and upper bounds are 0.1 and 20, 

respectively; the mean and standard deviation are 1.1 and 0.55, respectively. This parameterization is 

used in Shayegh and Thomas (forthcoming). 

 Figure 4 presents the policy simulation results under uncertainty over climate sensitivity. For 

each of the policy outcomes (abatement, geoengineering, temperature, atmospheric carbon, and the 

price of carbon), we present the mean value (in red) across the 1000 simulations, the 5th and 95th 

percentiles, and the value from the deterministic case (in green). The green and red curves are very 

close to each other, indicating that the average policy outcome is not much different than the 

deterministic case (this is because the distribution of the stochastic climate sensitivity variable is set so 

that its average is the deterministic value). The 5th and 95th percentile values demonstrate that 

uncertainty over climate sensitivity affects optimal geoengineering policy much more so than it affects 

optimal abatement policy.  The 5th to 95th percentile bands for abatement, carbon concentrations, and 

the carbon price are very narrow. This is surprising, since the only stochastic variable in this simulation is 

the climate sensitivity variable, which is not directly related to geoengineering. 
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 We can also repeat these stochastic simulations under different distributions of climate 

sensitivity. In particular, we consider alternate values for the standard deviation of the parameter, both 

higher (1.0) and lower (0.20) than the base case (0.55). We find that the level of uncertainty of climate 

sensitivity does not substantially affect the mean values for abatement action or the carbon price, 

although it does (unsurprisingly) affect the percentile bands. A smaller standard deviation of beliefs 

about climate sensitivity leads to a narrower confidence interval.  However, the standard deviation of 

climate sensitivity does affect both the mean and the percentile bands for optimal GE action. A larger 

standard deviation in climate sensitivity leads to a lower mean level of geoengineering action.  

 Next, we allow a different parameter to be stochastic.  Figure 5 shows results from simulations 

in which the parameter 𝜈𝐺, the coefficient on damages from GE, is stochastic. The potential damages 

from solar geoengineering represent the primary source of uncertainty.11 The distribution of this 

parameter is assumed to be lognormal, with a median value of 0.03, identical to the value on the 

deterministic case. As in the case of uncertainty over climate sensitivity, here with uncertainty over GE 

damages, we find that uncertainty affects the distribution of optimal GE policy by a much greater 

amount than it affects the distribution of optimal abatement policy.  Optimal GE can peak at anywhere 

between 20% and 110% intensity.  As a result, temperatures can peak between 1 and 2 degrees above 

preindustrial levels.  

  

IV.D Sensitivity analysis 

 Lastly we consider how variation in certain parameters affects optimal policy.  In these 

simulations, presented in Figure 6, we conduct deterministic simulations for several different values of 

certain parameters, along with the no-geoengineering scenario.  Figure 6 presents the optimal GE 

deployment path under each parameter value; the Appendix figures present the other policy outcomes 

                                                           
11 National Research Council (2015). 
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(including abatement and the social cost of carbon).  We vary the costs of geoengineering (𝐺𝑐𝑜𝑒𝑓, Panel 

A), its effectiveness at counterbalancing radiative forcing (𝜙, Panel B),  the damages associated with its 

implementation (𝜈𝑔, Panel C), and the social discount rate (𝜌, Panel D).  

 As the implementation costs of geoengineering increase, less geoengineering is deployed.  

Because these costs are so low in the base case, an order-of-magnitude change in the coefficient in front 

of these costs has only a modest effect on GE deployment; the maximum level of GE intensity varies 

from 20% to 50%.  Appendix Figure 1 shows that abatement, carbon concentrations, and the social cost 

of carbon are not very sensitive to this parameter. But even if we make geoengineering 10 times more 

costly than the base case, there is a substantial amount of warming that is still compensated by 

geoengineering. This reflects the fact that by eliminating the inertia of the carbon cycle and therefore 

allowing for postponing abatement, geoengineering decreases the total costs of climate change and 

increases welfare. 

 Panel B of Figure 6 shows that geoengineering effectiveness affects its deployment – as GE is 

more effective, it is used more intensively.  When its effectiveness is very low (𝜙 = 0.01), it is barely 

used. When it is very effective (𝜙 = 5.0), it is immediately ramped up to 25% intensity, after which it 

gradually increases.  Even after 500 years we see no decline in its intensity. Appendix Figure 2 shows 

that more effective GE results in lower abatement and higher carbon concentrations, but lower 

temperatures. With a high effectiveness of 𝜙 = 2, temperatures are brought back to pre-industrial 

levels after just 200 years. 

 Next, variation in the damages from GE cause a very wide range of optimal GE deployment, as 

seen in Panel C of Figure 6. When damages are an order-of-magnitude lower than the base case (𝜈𝐺 =

0.003), GE eventually reaches greater than 100% intensity. The variation from damages, in Panel C, is so 

much larger than the variation from costs, in Panel A, because costs are so small and damages (at least 

in our conservative calibration) are quite large. Appendix Figure 3 demonstrates that the variation in 
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optimal abatement and carbon concentrations is smaller than the variation in GE deployment. With the 

lowest level of GE damages, mean temperatures are brought back to within 0.5 degrees of preindustrial 

levels by 200 years. 

 Finally, increasing the discount rate (Panel D of Error! Reference source not found. and 

Appendix Figure 4) decreases the amounts of both abatement and geoengineering, as well as the carbon 

price.  Abatement and geoengineering are postponed to a later stage, but also less geoengineering is 

implemented overall and at its peak. This suggests that more patient societies would tend to favor 

abatement over geoengineering. 

 In all of these sensitivity analyses, the level of abatement varies but eventually reaches 100%. 

Can we find reasonable parameter values where abatement is never used in the long run? That is, 

geoengineering in theory could be so cheap that the optimal solution ends up at a corner solution with 

no use of abatement at all. However, even when we reduce the geoengineering costs to 1% of its base 

case value and geoengineering damages to 10% of its base case value, and we reduce the fraction of 

climate change damages attributable to atmospheric and ocean carbon to just 1% each, we are still left 

with a case where abatement eventually reaches 100% intensity. It is much delayed, not occurring until 

period 35 (relative to period 200 in the no-GE case). For as long as there are damages associated with 

carbon concentrations that are not related to temperature, there will be a need for abatement. 

  

V. Conclusion  

 Solar geoengineering has the potential to lower the costs of dealing with climate change and 

reduce the need for high levels of abatement and a high carbon price. Three points are crucial. First, 

models that ignore geoengineering may prescribe policies that abate too much, cost too much, and have 

a carbon price that is too high. Second, uncertainty over both climate damages and geoengineering 

costs and damages can substantially affect optimal policy. Third, because solar geoengineering reduces 
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temperatures but not carbon concentrations, it is merely an imperfect substitute for abatement.  We 

explore these issue through both an analytical theoretical model and a numerical integrated assessment 

model of climate change. Our modification of the DICE model provides quantitative insights as to how 

geoengineering can affect optimal abatement policy. The level of abatement can be about 25% lower 

when allowing for geoengineering, and the optimal atmospheric carbon concentrations can be more 

than 20% higher. Despite that, temperature changes can be kept about one-and-a-half degrees Celsius 

lower because of the use of geoengineering, and total GDP losses can be lower by up to one-and-a-half 

percentage points of GDP. These base-case results are of course sensitive to the parameter values, 

which are very uncertain. Still, under a wide (two orders of magnitude) range in parameters describing 

the costs and damages of geoengineering, the optimal carbon price and level of abatement do not vary 

substantially, although the optimal level of geoengineering does vary substantially (ranging from nearly 

no geoengineering to more than 100% geoengineering). As with all climate models, more precise 

parameter values are essential for pinning down specific policy recommendations.  

 We caution that these results should not be interpreted as a policy prescription for immediate 

deployment of geoengineering. The uncertainties surrounding the calibration of the model, in particular 

the damages associated with geoengineering, are too great to be able to do so. Instead, the main 

contribution of this paper is in its qualitative and quantitative exploration of how including GE in climate 

models affects the optimal deployment of abatement and the social cost of carbon, of how uncertainty 

affects optimal policy, and of how important it is that geoengineering reduces temperatures but not 

carbon.  

 Still, the fundamental contribution made by this study has important policy implications. It is not 

efficient to merely estimate the marginal external damages of a ton of carbon and institute that carbon 

tax, if the external damages are estimated in a model without the possibility of geoengineering. Our 

results suggest that this may in fact be the case, and that for this reason the social cost of carbon 
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currently being used by policymakers may be too high.12 Of course, there are many other potential 

reasons why the social cost of carbon currently used may be too low – estimates may omit many 

benefits from carbon reductions.13 

 Our research emphasizes the need for more information on costs and benefits of 

geoengineering. Furthermore, refinements to the model may yield valuable policy lessons – for instance 

expanding the set of parameters modeled as stochastic variables, or adding refinements to either the 

climate model in DICE or its treatment of economic costs or growth.  Future research in progress is 

examining how GE can address the issue of tipping points, or irreversibilities and discontinues in climate 

damages. The damages from GE represent probably the most "unknown" of all of the features of this 

model. Finally, there are many issues related to GE that we do not or cannot address using an IAM – 

including a fat-tailed distribution of risks, discontinues in costs of damages, and ethical issues related to 

the question of abatement versus GE.  

 

 

  

                                                           
12 The EPA and other federal agencies use an SCC of $37 per ton of CO2: 
http://www.epa.gov/climatechange/EPAactivities/economics/scc.html.  
13 See for instance Howard (2014). 

http://www.epa.gov/climatechange/EPAactivities/economics/scc.html
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Table 1 – Summary of modifications to DICE 

 Radiative 
Forcing 

Damages from 
Solar GE 

Climate 
Change 
Damages 

Other 
modifications 

Outcomes 

Bickel and 
Lane (2009) 

Linear term in 
forcing 
equation 

None No 
Modifications 

Also model 
carbon capture 
geoengineering 

Cost-benefit 
analysis for 
fixed levels of 
GE; carbon 
price 

Gramstad and 
Tjotta (2010) 

Linear term in 
forcing 
equation 

Quadratic 
multiplier on 
gross output 

No 
Modifications 

None Cost-benefit 
analysis for 
fixed levels of 
GE 

Goes et al. 
(2011) and 
Bickel and 
Agrawal 
(2013) 

Linear term in 
forcing 
equation 

Linear 
function of 
aerosols 
deployed 

Damages a 
function of 
temperature 
and rate of 
temperature 
change 

Alter 
discounting 
formula; 
change climate 
model to 
DOECLIM; 
intermittency 
in GE 

Cost-benefit 
analysis for 
fixed levels of 
GE and for 
optimal 
GE/abatement 
mix; Bickel and 
Agrawal (2013) 
considers 
sensitivity 
analysis of 
Goes et al. 
(2011) 

This paper Multiplicative 
factor in 
forcing 
equation 

Quadratic 
multiplier on 
gross output 

Damages a 
function of 
temperature, 
atmospheric 
carbon, and 
ocean carbon 

Stochastic 
analysis of 
climate 
sensitivity 

Optimal levels 
of GE and 
abatement; 
carbon price; 
sensitivity 
analyses 
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Figure 1 – Static Model 
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Figure 2 – Base case simulations 

 



38 
 

  

  

 
Figure 3 – Variation in the Composition of Damages 
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Figure 4 – Stochastic Simulation Results–Climate Sensitivity 
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Figure 5 – Stochastic Simulation Results–Geoengineering damage 
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Figure 6 – Sensitivity analysis  
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Appendix: Details of Static Model 

In the appendix we verify that 1) the marginal cost of abatement is increasing in 𝑘𝑎, 2) the 

marginal benefit of abatement is decreasing in 𝑘𝑎, 3) the marginal cost of abatement is higher for a 

positive value of GE 𝑘𝑔 than it is for 𝑘𝑔 = 0, and 4) the marginal benefit of abatement is lower for a 

positive value of GE 𝑘𝑔 than it is for 𝑘𝑔 = 0. We also argue that the difference in marginal costs (3) is 

likely to be smaller in magnitude than the difference in marginal benefits (4). 

The marginal cost of abatement as a function of abatement 𝑘𝑎 is 𝑓′(𝑘 − 𝑘𝑎 − 𝑘𝑔) (1 −

𝑑 ((1 − 𝑔(𝑘𝑎))𝑘, 𝑘𝑔)), for some fixed 𝑘𝑔. The first half is increasing in 𝑘𝑎 since 𝑓 is concave. The 

second half is increasing in 𝑘𝑎 since 𝑔 is increasing and 𝑑 is decreasing in 𝑥. Thus, marginal cost is 

monotone increasing. 

 The marginal benefit of abatement is 𝑓(𝑘 − 𝑘𝑎 − 𝑘𝑔)𝑘𝑔
′(𝑘𝑎)𝑑𝑥 ((1 − 𝑔(𝑘𝑎))𝑘, 𝑘𝑔). Because 𝑓 

is increasing the first part is decreasing in 𝑘𝑎. Assuming that 𝑔 is concave, the middle part is decreasing 

in 𝑘𝑎. Lastly, because the cross-partial derivative 𝑑𝑥𝑘 < 0, the third part of this expression is decreasing 

in 𝑘𝑎, and so the entire expression for marginal benefit is monotone decreasing. 

 The marginal cost of abatement at zero GE is 𝑓′(𝑘 − 𝑘𝑎) (1 − 𝑑 ((1 − 𝑔(𝑘𝑎))𝑘, 0)), and for an 

arbitrary level of GE (for instance, 𝑘𝑔
𝑜𝑝𝑡

) it is 𝑓′(𝑘 − 𝑘𝑎 − 𝑘𝑔) (1 − 𝑑 ((1 − 𝑔(𝑘𝑎))𝑘, 𝑘𝑔)). Because 𝑓 is 

concave, the first part of the expression is higher for 𝑘𝑔 > 0. Because 𝑑𝑘 < 0, the second part of the 

expression is higher for 𝑘𝑔 > 0. Thus, the marginal cost of abatement is higher for a positive value of GE 

𝑘𝑔 than it is for 𝑘𝑔 = 0. 

 The marginal benefit of abatement at zero GE is 𝑓(𝑘 − 𝑘𝑎)𝑘𝑔
′(𝑘𝑎)𝑑𝑥 ((1 − 𝑔(𝑘𝑎))𝑘, 0), and 

for an arbitrary level of GE it is 𝑓(𝑘 − 𝑘𝑎 − 𝑘𝑔)𝑘𝑔
′(𝑘𝑎)𝑑𝑥 ((1 − 𝑔(𝑘𝑎))𝑘, 𝑘𝑔). Because 𝑓 is increasing, 
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the first part of this expression is lower for 𝑘𝑔 > 0. Because 𝑑𝑥𝑘 < 0, the second part of the expression 

is lower for 𝑘𝑔 > 0. Thus, the marginal benefit of abatement is lower for a positive value of GE 𝑘𝑔 than it 

is for 𝑘𝑔 = 0. 

 Lastly, we argue that the magnitude of the difference in the two marginal benefit curves is likely 

to be large, while the magnitude of the difference in the two marginal cost curves is likely to be small. 

This cannot be mathematically demonstrated like the rest of the claims in the appendix. Rather, it 

follows from our intuition of the application of the model. Consider first the difference in marginal costs. 

The first half of the expression is the difference between 𝑓′(𝑘 − 𝑘𝑎) and 𝑓′(𝑘 − 𝑘𝑎 − 𝑘𝑔). This is likely 

to be small, because 𝑘𝑔 is likely to be very small relative to 𝑘 (i.e. only a small fraction of total capital will 

be spent on GE). The second difference between the two expressions is 1 − 𝑑 ((1 − 𝑔(𝑘𝑎))𝑘, 0) versus 

1 − 𝑑 ((1 − 𝑔(𝑘𝑎))𝑘, 𝑘𝑔). This is also likely to be small because the damages from climate change as a 

proportion of total potential output (𝑑) is likely to be only a few percentage points. Thus, even if the 

optimal level of 𝑘𝑔 completely eliminated climate change damages (𝑑 = 0), the value of 1 − 𝑑 would 

change only from, say, 98% to 100%. 

 Consider instead the differences in marginal damages. The first difference is the difference 

between 𝑓(𝑘 − 𝑘𝑎) and 𝑓(𝑘 − 𝑘𝑎 − 𝑘𝑔), which from the argument in the previous paragraph is likely to 

be small since 𝑘𝑔 is small relative to 𝑘. The other difference is the difference between 

𝑑𝑥 ((1 − 𝑔(𝑘𝑎))𝑘, 0) and 𝑑𝑥 ((1 − 𝑔(𝑘𝑎))𝑘, 𝑘𝑔). This difference is likely to be large (first-order). Even 

though damages 𝑑 may be small (a few percentage points), the difference in the marginal damages 𝑑𝑥 

may be large depending on the presence of GE. At the extreme, if 𝑘𝑔 is sufficiently high to eliminate any 

damages from climate change, then 𝑑𝑥(𝑥, 𝑘𝑔) will be zero though 𝑑𝑥(𝑥, 𝑘𝑔) is positive. 

Uncertainty 
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 We now derive the expressions in section II.A in which pollution damages and geoengineering 

benefits are uncertain.  The two first-order conditions for the planner's problem can be written as: 

𝐹 ≡ 𝑓′(𝑘 − 𝑘𝑎 − 𝑘𝑔) ∙ (1 − 𝐸[𝑑(𝑥, 𝑘𝑔, 𝜃𝑥, 𝜃𝑔)]) − 𝑓(𝑘 − 𝑘𝑎 − 𝑘𝑔) ∙ 𝑘 ∙ 𝑔
′(𝑘𝑎) ∙ 𝐸[𝑑𝑥(𝑥, 𝑘𝑔, 𝜃𝑥, 𝜃𝑔)]

= 0 

𝐺 ≡ 𝑔′(𝑘𝑎) ∙ 𝑘 ∙ 𝐸[𝑑𝑥(𝑥, 𝑘𝑔, 𝜃𝑥, 𝜃𝑔)] + 𝐸[𝑑𝑘(𝑥, 𝑘𝑔, 𝜃𝑥, 𝜃𝑔)] = 0 

The variance of the shocks, 𝑉𝑎𝑟(𝜃𝑥) and 𝑉𝑎𝑟(𝜃𝑔), are treated as exogenous parameters that affect the 

expected values of the damage function and its partial derivatives, as defined in the text.  Therefore, the 

implicit function theorem can be used to find the following derivatives: 

(

 
 

𝜕𝑘𝑎
𝜕𝑉𝑎𝑟(𝜃𝑥)

𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑥))

 
 
= −

(

 
 

𝜕𝐹

𝜕𝑘𝑎

𝜕𝐹

𝜕𝑘𝑔
𝜕𝐺

𝜕𝑘𝑎

𝜕𝐺

𝜕𝑘𝑔)

 
 

−1

(

 
 

𝜕𝐹

𝜕𝑉𝑎𝑟(𝜃𝑥)
𝜕𝐺

𝜕𝑉𝑎𝑟(𝜃𝑥))

 
 

 

(

 
 

𝜕𝑘𝑎

𝜕𝑉𝑎𝑟(𝜃𝑔)

𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑔))

 
 
= −

(

 
 

𝜕𝐹

𝜕𝑘𝑎

𝜕𝐹

𝜕𝑘𝑔
𝜕𝐺

𝜕𝑘𝑎

𝜕𝐺

𝜕𝑘𝑔)

 
 

−1

(

 
 

𝜕𝐹

𝜕𝑉𝑎𝑟(𝜃𝑔)

𝜕𝐺

𝜕𝑉𝑎𝑟(𝜃𝑔))

 
 

 

The inverse of the 4-by-4 matrix in these expressions (the Jacobian matrix) is 

1

𝐷𝑒𝑡

(

 
 

𝜕𝐺

𝜕𝑘𝑔
−
𝜕𝐹

𝜕𝑘𝑔

−
𝜕𝐺

𝜕𝑘𝑎

𝜕𝐹

𝜕𝑘𝑎 )

 
 

 

The determinant of the Jacobian 𝐷𝑒𝑡 is positive from the second-order condition of the planner's 

maximization problem.  The elements of the Jacobian matrix are: 

𝜕𝐹

𝜕𝑘𝑎
= −𝑓′′(𝑘𝑝)(1 − 𝐸[𝑑]) + 𝑓

′(𝑘𝑝)(−
𝜕𝐸[𝑑]

𝜕𝑘𝑎
) + 𝑓′(𝑘𝑝)𝑘𝑔

′(𝑘𝑎)𝐸[𝑑𝑥] − 𝑓(𝑘𝑝)𝑘𝑔
′′(𝑘𝑎)𝐸[𝑑𝑥]

− 𝑓(𝑘𝑝)𝑘𝑔
′(𝑘𝑎)

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
> 0 

𝜕𝐹

𝜕𝑘𝑔
= −𝑓′′(𝑘𝑝)(1 − 𝐸[𝑑]) + 𝑓

′(𝑘𝑝)(−
𝜕𝐸[𝑑]

𝜕𝑘𝑔
) + 𝑓′(𝑘𝑝)𝑘𝑔

′(𝑘𝑎)𝐸[𝑑𝑥] − 𝑓(𝑘𝑝)𝑘𝑔
′(𝑘𝑎)

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑔
> 0 



49 
 

𝜕𝐺

𝜕𝑘𝑎
= 𝑔′′(𝑘𝑎)𝑘𝐸[𝑑𝑥] + 𝑔

′(𝑘𝑎)𝑘
𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
+
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
 

𝜕𝐺

𝜕𝑘𝑔
= 𝑔′(𝑘𝑎)𝑘

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑔
+
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔
 

All terms in 
𝜕𝐹

𝜕𝑘𝑎
 and 

𝜕𝐹

𝜕𝑘𝑔
 are positive.  However, 

𝜕𝐺

𝜕𝑘𝑎
 and 

𝜕𝐺

𝜕𝑘𝑔
 have ambiguous sign.  In 

𝜕𝐺

𝜕𝑘𝑎
, the first two 

terms are negative, and the third term is positive.  In 
𝜕𝐺

𝜕𝑘𝑔
, the first term is negative, and the second term 

is positive.  Since the final term in each expression is a multiple of 𝑑𝑘𝑘, which we assume is negative,   

𝜕𝐺

𝜕𝑘𝑎
 is negative and  

𝜕𝐺

𝜕𝑘𝑔
 is positive so long as 𝑑𝑥𝑘 is not too negative.   

 Furthermore, 

𝜕𝐹

𝜕𝑉𝑎𝑟(𝜃𝑥)
= −𝑓′(𝑘𝑝)

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)
− 𝑓(𝑘𝑝)𝑘𝑔′(𝑘𝑎)

𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)
 

𝜕𝐺

𝜕𝑉𝑎𝑟(𝜃𝑥)
= 𝑔′(𝑘𝑎)𝑘

𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)
+
𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑥)
 

 Substituting these expressions into the matrix equation above, simplifying, and collecting terms 

yields 

𝜕𝑘𝑎
𝜕𝑉𝑎𝑟(𝜃𝑥)

=
1

𝐷𝑒𝑡
{[𝑓′(𝑘𝑝) (𝑔

′(𝑘𝑎)𝑘
𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑔
+
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔
)]

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)

+ [𝑓(𝑘𝑝)𝑘𝑔
′(𝑘𝑎)

𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔

+ 𝑔′(𝑘𝑎)𝑘 (−𝑓
′′(𝑘𝑝)(1 − 𝐸[𝑑]) − 𝑓

′(𝑘𝑝)
𝜕𝐸[𝑑]

𝜕𝑘𝑔
+ 𝑓′(𝑘𝑝)𝑘𝑔

′(𝑘𝑎)𝐸[𝑑𝑥])]
𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)

+ [
𝜕𝐹

𝜕𝑘𝑔
]
𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑥)
} 

Define 𝐴 ≡  𝑓(𝑘𝑝)𝑘𝑔
′(𝑘𝑎)

𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑔
+ 𝑔′(𝑘𝑎)𝑘 (−𝑓

′′(𝑘𝑝)(1 − 𝐸[𝑑]) − 𝑓
′(𝑘𝑝)

𝜕𝐸[𝑑]

𝜕𝑘𝑔
+

𝑓′(𝑘𝑝)𝑘𝑔
′(𝑘𝑎)𝐸[𝑑𝑥]) > 0 and 𝐵 ≡

𝜕𝐹

𝜕𝑘𝑔
> 0, and the expression is as appears in the text. 

 Next, 
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𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑥)
=

1

𝐷𝑒𝑡
{[𝑓′(𝑘𝑝)(−𝑔

′′(𝑘𝑎)𝑘𝐸[𝑑𝑥] − 𝑔
′(𝑘𝑎)𝑘

𝜕𝐸[𝑑𝑥]

𝜕𝑘𝑎
−
𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
)]

𝜕𝐸[𝑑]

𝜕𝑉𝑎𝑟(𝜃𝑥)

+ [−𝑓′(𝑘𝑝)𝑘𝑔
′(𝑘𝑎) (

𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
)

− 𝑔′(𝑘𝑎) (−𝑓
′′(𝑘𝑝)(1 − 𝐸[𝑑]) − 𝑓

′(𝑘𝑝)
𝜕𝐸[𝑑]

𝜕𝑘𝑎
+ 𝑓′(𝑘𝑝)𝑘𝑔

′(𝑘𝑎)𝐸[𝑑𝑥])]
𝜕𝐸[𝑑𝑥]

𝜕𝑉𝑎𝑟(𝜃𝑥)

+ [−
𝜕𝐹

𝜕𝑘𝑎
]
𝜕𝐸[𝑑𝑘]

𝜕𝑉𝑎𝑟(𝜃𝑥)
} 

Define 𝐶 ≡ 𝑓′(𝑘𝑝)𝑘𝑔
′(𝑘𝑎) (

𝜕𝐸[𝑑𝑘]

𝜕𝑘𝑎
) + 𝑔′(𝑘𝑎) (−𝑓

′′(𝑘𝑝)(1 − 𝐸[𝑑]) − 𝑓
′(𝑘𝑝)

𝜕𝐸[𝑑]

𝜕𝑘𝑎
+

𝑓′(𝑘𝑝)𝑘𝑔
′(𝑘𝑎)𝐸[𝑑𝑥]) > 0 and 𝐷 ≡

𝜕𝐹

𝜕𝑘𝑎
> 0, and the expression is as appears in the text. 

 The solutions for 
𝜕𝑘𝑎

𝜕𝑉𝑎𝑟(𝜃𝑔)
 and 

𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑔)
 are identical to those for 

𝜕𝑘𝑎

𝜕𝑉𝑎𝑟(𝜃𝑥)
 and 

𝜕𝑘𝑔

𝜕𝑉𝑎𝑟(𝜃𝑥)
, 

respectively, except for replacing all partials with respect to 𝑉𝑎𝑟(𝜃𝑥) with partials with respect to 

𝑉𝑎𝑟(𝜃𝑔).  

 

Decomposition of Climate Damages  

 We now derive the expressions in section II.B where damages occur from both temperature and 

from carbon.  The first-order conditions in for the planner's problem are identical as in the original 

model, except that the damage function is now 𝑑(𝑥; 𝑘𝑔) = 𝜆𝑑𝑑1(𝑥) + 𝑑2(𝑥; 𝑘𝑔). 

𝐹 ≡ 𝑓′(𝑘 − 𝑘𝑎 − 𝑘𝑔) ∙ (1 − 𝑑(𝑥; 𝑘𝑔)) − 𝑓(𝑘 − 𝑘𝑎 − 𝑘𝑔) ∙ 𝑘 ∙ 𝑔
′(𝑘𝑎) ∙ 𝑑𝑥(𝑥; 𝑘𝑔) = 0 

𝐺 ≡ 𝑔′(𝑘𝑎) ∙ 𝑘 ∙ 𝑑𝑥(𝑥; 𝑘𝑔) + 𝑑𝑘(𝑥; 𝑘𝑔) = 0 

As with the last model, the implicit function theorem can be used to conduct comparative statics: 

(

 
 

𝜕𝑘𝑎
𝜕𝜆𝑑
𝜕𝑘𝑔

𝜕𝜆𝑑)

 
 
= −

(

 
 

𝜕𝐹

𝜕𝑘𝑎

𝜕𝐹

𝜕𝑘𝑔
𝜕𝐺

𝜕𝑘𝑎

𝜕𝐺

𝜕𝑘𝑔)

 
 

−1

(

 
 

𝜕𝐹

𝜕𝜆𝑑
𝜕𝐺

𝜕𝜆𝑑)
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Again, it can be shown that 
𝜕𝐹

𝜕𝑘𝑎
> 0, 

𝜕𝐹

𝜕𝑘𝑔
> 0, and the determinant of the Jacobian is positive.  The 

partial derivatives 
𝜕𝐺

𝜕𝑘𝑎
 and 

𝜕𝐺

𝜕𝑘𝑔
 have ambiguous sign: 

𝜕𝐺

𝜕𝑘𝑎
= 𝑔′′(𝑘𝑎)𝑘𝑑2𝑥 + 𝑔

′(𝑘𝑎)𝑘
𝜕𝐸𝑑2𝑥
𝜕𝑘𝑎

+
𝜕𝐸𝑑2𝑘
𝜕𝑘𝑎

 

𝜕𝐺

𝜕𝑘𝑔
= 𝑔′(𝑘𝑎)𝑘

𝜕𝐸𝑑2𝑥
𝜕𝑘𝑔

+
𝜕𝐸𝑑2𝑘
𝜕𝑘𝑔

 

As in the model in the prior section, the first two terms in 
𝜕𝐺

𝜕𝑘𝑎
 are negative, and the last is positive.  The 

first term in 
𝜕𝐺

𝜕𝑘𝑔
 is negative, and the last is positive.  Also, 

𝜕𝐹

𝜕𝜆𝑑
= −𝑓′(𝑘𝑝)𝑑1 − 𝑓(𝑘𝑝)𝑑1𝑥𝑘𝑔

′(𝑘𝑎) < 0 

𝜕𝐺

𝜕𝜆𝑑
= 0 

 After substituting in for each of these partial derivatives and simplifying, we get 

𝜕𝑘𝑎
𝜕𝜆𝑑

=
1

𝐷𝑒𝑡
∙ [𝑓′(𝑘𝑝)𝑑1 + 𝑓(𝑘𝑝)𝑑1𝑥𝑘𝑔

′(𝑘𝑎)][𝑔
′(𝑘𝑎)𝑘𝑑2𝑥𝑘 + 𝑑2𝑘𝑘] 

𝜕𝑘𝑔

𝜕𝜆𝑑
=

1

𝐷𝑒𝑡
∙ [𝑓′(𝑘𝑝)𝑑1 + 𝑓(𝑘𝑝)𝑑1𝑥𝑘𝑔

′(𝑘𝑎)][(−𝑔
′′(𝑘𝑎)𝑘𝑑2𝑥 + 𝑔

′(𝑘𝑎)
2𝑘2𝑑2𝑥𝑥 − 𝑘𝑔

′(𝑘𝑎)𝑑2𝑥𝑘)] 

The first set of terms in front of each expression, 
1

𝐷𝑒𝑡
∙ [𝑓′(𝑘𝑝)𝑑1 + 𝑓(𝑘𝑝)𝑑1𝑥𝑘𝑔

′(𝑘𝑎)], is positive and is 

defined as the constant C in the text.  
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Appendix Figure 1 – Sensitivity analysis – Cost of geoengineering 
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Appendix Figure 2 – Sensitivity analysis – Effectiveness of geoengineering 
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Appendix Figure 3 – Sensitivity analysis – Damages from geoengineering 
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Appendix Figure 4 – Sensitivity analysis – Discount Rate 

 


