
Toward a Fully Continuous Exchange*

Albert S. Kyle† Jeongmin Lee‡

July 4, 2017

Abstract

We propose a new market design for a securities exchange that matches “con-

tinuous scaled limit orders.” This new order type differs from standard limit orders

in two ways. First, orders to buy and sell represent flows of shares over time rather

than stocks of shares available for immediate purchase or sale. Second, orders are

expressed as continuouspiecewise linear functions relatingprice to quantity rather

than step functions defined on a discrete grid of prices and quantities. Continuous

scaled limit orders implement Fischer Black’s vision of traders limiting temporary

price impact by trading gradually over time. Theydramatically lessen the rents high

frequency traders earn from the currentmarket design. Theproposal is compatible

with frequent batch auctions and random time delays.
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Almost half a century ago, Fischer Black (1971a,b)made bold predictions about how

stock market trading would change if the market design for trading stocks moved from

the human-dominated specialist system to an electronic system in which trading and

marketmakingusedcomputers. Hepredicted that liquiditywouldnotbe supplied cheaply,

especially over short periods of time. Realizing that temporary price impact makes it

expensive to trade large quantities over short horizons, he conjectured that customers

would spread large trades out over time to reduce price-impact costs. He believed an

efficient market design could reduce bid-ask spreads on small trades to a vanishingly

small level while providing practical ways for large traders to reduce impact by trading

gradually over time.

FischerBlackwas remarkablyprescient. Large institutional traders around theworld

nowadays spread their trading out over time exactly like he said they would. Algorith-

mic trades are often executed by breaking large intendedmeta-orders into many small

pieces and trading the many small pieces over time. Even as computers have become

much cheaper, the technology gap among traders remains economically significant in

amanner Fischer Blackmay not have foreseen. High frequency traders earn substantial

profits from being a fewmicroseconds faster than other traders. This has prevented the

bid-ask spread on small orders from disappearing.

The purpose of this paper is to introduce a fully continuous exchange, a new type

of exchange designed to implement Fischer Black’s vision of an efficient market design.

The continuous exchange matches buyers and seller who use a new order type, which

we call continuous scaled limit orders.

A continuous scaled limit order is different from a standard limit order in two ways.

First, it allows traders to choose the maximum rate at which the order executes over

time. This allows all traders to submit one order to trade gradually. In effect, this con-

verts supply and demand for securities into flows over time, just like textbook supply

and demand schedules for goods and services. Second, it allows the actual execution

rate to vary continuously between zero and the maximum rate as the price varies be-

tween upper and lower limit prices chosen by the trader. There is a uniquely deter-

mined market clearing price at which all supply and demand are satisfied. These two

differences allowour proposal for continuous exchanges to address problems related to
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discreteness in current stock market design.

The trading of equities in the United States and Europe has in recent decades be-

come dominated by continuous limit order bookswhich handlemillions of buy and sell

orders each day. Continuous limit order books have elements of discreteness in price,

quantity, and time. A standard limit order is a message conveying an offer to buy or sell

a discrete quantity at a discrete price, where the quantity is an integer multiple of min-

imum lot size and the price is an integer multiple of a minimum tick size. In most U.S.

stocks, theminimum lot size is one share or one hundred shares and theminimum tick

size is $0.01 (one cent per share). A limit order book processes discrete orders sequen-

tially in the order of their arrival. Because a discrete price gridmakes demand and sup-

ply schedules step functions, there is typically excess supply or demand at every price.

To allocate quantitieswhen there is excess supply or demand, exchanges often use time

priority, which executes incoming orders against the existing orders that arrived first in

the limit order book. Because sending, receiving, and processing messages take time,

latencies make it impossible for a trader to trade continuously in time. The ability to

spread trades out over time depends on traders’ message costs. Traders with inferior

technology submit a smaller number of larger orders. In this way, standard limit order

books promote provision of instantaneous liquidity by having larger-than-optimal or-

ders available for execution at any given time. With discreteness in prices, quantities,

and time, so-called “continuous” limit order books are hardly continuous.

Thediscreteness of today’smarket design creates rents for traderswhohave invested

in costly superior technology. High frequency traders use their speed to take advantage

of time priority by placing orders quickly to be the first in the queue. Time priority is

profitable for traders at the front of thequeue because large tick size limitsprice compe-

tition between ticks. High frequency traders use their speed to “pick off” slower traders’

orders by hitting or lifting stale bids or offers before the slower traders can cancel them.

They also use their speed to cancel their own stale bids and offers before other traders

can hit or lift them. High frequency traders further benefit from a reluctance by slow

traders to compete for time priority due to slow traders seeking to avoid being picked

off.

By making trading continuous in price, quantity, and time, a fully continuous ex-
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change dramatically lowers the rents that high frequency traders earn. Because traders

with inferior technology can spread their orders over time easily, the orders picked off

by high frequency traders are small. Since continuous scaled limit ordersmake flow de-

mand schedules piecewise linear functions of the price, there is a uniquemarket clear-

ing price with no excess supply or demand. Therefore, an allocation rule such as time

priority is unnecessary. Exchanges do not need to send numerous messages to traders

to update partial order execution because traders can infer exact quantities traded from

a public feed of themarket clearing price. Since traders compete based on the price and

not their relative speed, winner-take-all rents for being the fastest trader almost vanish.

If continuous scaled limit orderswerewidelyused, therewouldbewinners and losers.

The current market design, promoting provision of instantaneous liquidity, favors the

fastest traders and traders with short-term information. High frequency traders would

lose because the gains from being the first to act would virtually disappear. Trading

desks at investment banks might lose because they trade on very short-term informa-

tion. In contrast, retail investors with inferior technology and little information would

gain because having high message costs and slow speed would not prevent efficient

trading algorithms. Large institutional investorswouldgainbecause their slightly slower

speedwould not be a relative disadvantage and because the opportunity cost of trading

more slowly on long-term information would be low.

There are multiple sources of net welfare gains. First, there are gains from cost sav-

ings of reduced investment in the arms race to be the fastest trader in themarket (Harris,

2013; Li, 2014; Biais, Foucault andMoinas, 2015; Budish, Cramton and Shim, 2015). Sec-

ond, there are further gains from reducing the number of messages that traders need to

send to spread out large trades over time and to receive updates on partial order exe-

cution. Third, the ability of institutional traders to trade on long-term information at

lower cost results in increased production of long-term informationwhile discouraging

production of short-term information. Long-term information is potentially socially

valuable because a more accurate stock price can inducemore efficient investment de-

cisions. Continuous scaled limit orders are consistent with the regulatory objectives

theU.S. Securities andExchangeCommission (SEC), theU.S. CommodityFutures Trad-

ing Commission (CFTC), and theUnited Kingdom’s Financial Conduct Authority (FCA),
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whose various objectives include investor protection; fair, open, effective, transparent,

and competitive financial markets; and efficient capital formation.

Continuous scaled limit orders make financial market design consistent with the

theoreticalmodels ofVayanos (1999),DuandZhu (2017), andKyle, ObizhaevaandWang

(2017). These models prove that spreading large trades out over time is equilibrium

behavior when traders have market impact. Traders limit the urgency of their trading

because dumping large quantities on the market quickly creates immediate, negative,

temporary price impact. Smooth trading is an optimal response to smooth trading by

others even when the rules of trading allow front-running, bluffing, and arbitrarily ag-

gressive trading.

Budish, Cramton and Shim (2015) propose amarket design in which frequent batch

auctions are held at intervals of 100 milliseconds or one second. Frequent batch auc-

tions reduce the profits high frequency traders earn by picking off resting limit orders

because orders arriving between auctions are allocated quantities and prices that do

not depend on which orders arrive first and which arrive last. Harris (2013) proposes

random time delays, which similarly limit high frequency trader profits by shuffling the

order inwhichmessages are processed. Unlike continuous scaled limit orders, frequent

batchauctions and randomtimedelaysdonot reduce the tendency for traderswithhigh

message costs to submit orders which are too large and do not eliminate the problem

that there is typically excess supply or demand at the prices at which trade takes place.

Black (1995) proposed “average-price market orders” and “indexed limit orders” as

modifications of standard order types which allow gradual trading to match the Vol-

umeWeightedAveragePrice (VWAP) or TimeWeightedAveragePrice (TWAP). Ourmore

radical proposal represents a newmarket design which allows traders to achieve TWAP

perfectly by placing one order.

The plan of this paper is as follows. Section 1 describes the continuous market de-

sign by contrasting continuous scaled limit orders with standard limit orders. Section 2

examines the implications of traders having different message costs, the algorithmic

simplicity of implementing continuous scaled limit orders in a matching engine, and

the implications of continuous scaled limit orders for high frequency trading. Section 3

discusses how continuous scaled limit orders are consistent with recent theoretical lit-
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erature. Section4 shows howcontinuous scaled limitorders are consistentwith random

time delays, frequent batch auctions, price speed bumps, and quantity speed bumps.

Section 5 concludes.

1 Order Types andMarket Clearing

In this section, we contrast standard limit orders with continuous scaled limit orders.

Standard limit orders offer instantaneous execution of a given quantity; thus, cumu-

lative trading volume is a discontinuous function of time. The discrete price grid de-

fined byminimumtick sizemakesmarket supply and demand schedules step functions

for which is typically necessary to ration supply or demand when trade takes place at

any allowed price. In this sense, the market is discontinuous in quantities, prices, and

time. Continuous scaled limit orders define flow-supply and flow-demand schedules

for shares. Since supply and demand schedules are continuous, monotonic, piecewise

linear functions, there is a uniquemarket clearing price atwhichflowsupply equalsflow

demand for shares.

1.1 Standard Limit Orders

The standard limit orders used in current exchanges are messages with three parame-

ters: a buy-sell indicator, a quantityQmax, and a limit priceP . A standardbuy limit order

conveys the message “Buy up toQmax (shares) at a price of P (dollars per share) or bet-

ter.” For an order placed at time t0, letQ (t0, t ) denote the cumulative quantity executed

during the time interval [t0, t ] for t > t0. Let p (t ) denote the most recent transaction

price, and define pmin (t0, t ) as the minimum price p (t ) during the interval t ∈ [t0, t ].

ThenQ (t0, t ) satisfies

Q (t0, t ) =





Qmax if pmin (t0, t ) < P,

α(t0, t )Qmax if pmin (t0, t ) = P, where α(t0, t ) ∈ [0, 1],

0 if pmin (t0, t ) > P.

(1)
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If theminimummarket price pmin(t0, t ) is above the limit priceP , nothing is bought; if it

is below the limit price, the order is fully executed (Q (t0, t ) = Qmax); if it exactly equals

the limit price, then the quantity executed Q (t0, t ) depends on the rule for allocating

traded quantities when it may not be possible to satisfy all demands the limit price P .

This allocation rule determines α(t0, t ), which is a monotonically nondecreasing step

function of time measuring the fraction of the order executed up to time t . Depending

on how the order interacts with other orders, it might receive a full execution (α(t0, t ) =

1), a partial execution (0 < α(t0, t ) < 1), or no executed quantity at all (α(t0, t ) = 0).1

With standard limit orders, the limit price P is an integer multiple of the minimum

tick size,2 and the quantity Qmax is an integer multiple of the minimum lot size.3 The

discrete price grid makes an allocation rule to determine α(t0, t ) necessary because

themarket supply and demand schedules calculated by aggregating all sell and buy or-

ders define quantities as discontinuous step functions of price, and there may not be

a unique point of intersection. Instead, there is typically a pair of best bid and offer

prices, with excess demand at the best bid and excess supply at the best offer. The ex-

change chooses the price that maximizes the quantity traded. Since there is typically

excess supply or demand at this price, some rule is needed to allocate prices and quan-

tities. Different allocation rules determine the fractional allocation α(t0, t ) in different

ways. For example, time priority specifies that older orders must receive full execu-

tion (α(t0, t ) = 1) before newer orders receive any execution (α(t0, t ) > 0). Instead

of time priority, somemarkets use a “pro rata” or proportional allocation rule according

1Thenotation inequation (1) ismeant to convey intuition; it is notmeant tobemathematically precise.

Withmore formal notation, the quantitiesQmax ,P , α(t0, t ), andQ (t0, t ) would have superscripts indicat-
ing the identity of the specific message, which could be mapped to a specific trader. Instead of equation

(1), we could writeQ (t0, t ) = α(t0, t )Qmax with α(t0, t ) = 1 when pmin(t0, t ) < P and α(t0, t ) = 0 when

pmin (t0, t ) > P .
2In the U.S. market, the stated minimum tick size was reduced from 1/8 of a dollar (12.5 cents per

share) to 1/16 of a dollar (6.25 cents per share) in the late 1990s and reduced again to its current level of

$0.01 (one cent per share) in 2001. The issue of tick size has been a surprisingly controversial political

issue over the years. In 2015, the SEC approved a “Tick Size Pilot Program,” an experiment in which stock

exchanges temporarily increased the tick size on some stocks to five cents while leaving the tick size on

other stocks unchanged at one cent.
3Historically, “round lots” (integer multiples of 100 shares) have been subject to different order execu-

tion and price reporting practices than “odd lots” (integer multiples of one share which are not integer

multiples of 100 shares).
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to which all orders receive a partial execution proportional to the unexecuted quantity

in the limit order book when executed against an incoming order.
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Figure 1: Market Clearing with Standard Limit Orders

Figure 1 depicts a transaction for 500 shares in a standard limit order book. Each

solid dot represents demandor supply for aminimum-round-lotquantity of 100 shares.

An executable limit order to buy 500 shares at $41.24 has just arrived into the limit order

book. Since there are limit orders to sell 800 shares at the sameprice, all 500 shares in the

buy order are immediately executed, but 300 shares of the sell orders at $41.24 remain

unexecuted. Both immediately before and immediately after this order execution, the

best bid price is $41.23 and the best offer price is $41.24. In addition to unexecuted

buy orders at $41.23 and unexecuted sell orders at $41.24, the limit order book also has

unexecuted buy orders at lower prices and unexecuted sell orders at higher prices. The
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graphs of the supply and demand schedules look like step functions.4

Sending, receiving, and processing order messages take time, and the orders are se-

quentially processed based on the arrival of orders. Even thoughmessages are sent and

received in continuous time, economically significant time lags of a few milliseconds

effectively prevent traders from trading continuously with standard limit orders. Con-

tinuous scaled limit orders, discussed next, allow trading to take place essentially con-

tinuously in time by incorporating a dynamic execution strategy into the order itself.

1.2 Continuous Scaled Limit Orders

Define a “continuous scaled limit order” as a message with five parameters: a buy-sell

indicator, a quantityQmax, two price levels PL and PH (with PL < PH ), and a maximum

trading speedUmax.
5 Such an order conveys themessage, “Buy up to a cumulative total

ofQmax (shares) at maximum rateUmax (shares per hour) at prices between PL and PH

(dollars per share).”

A trader could mimic a continuous scaled limit order by sending a sequence of very

small standard limit orders one at a time, with a new small order sent to replace the pre-

vious order after it is executed. Since submitting orders takes time—even at the speed

of light—a sequence of small orders can mimic a continuous scaled limit order only

imperfectly. By moving numerous small orders into the matching engine, one contin-

uous scaled limit order replaces thousands of standard limit orders and does it more

efficiently because performing operations within the matching engine is much faster

and cheaper than performing operations by sending and processing messages. A con-

tinuous scaled limit order defines a demand function for a flow of assets just like the

demand schedules in economics textbooks represent flow demands for goods and ser-

4Mathematically, supply anddemand schedules are step functionswhichdefine theprice as a function

of the quantity. This can be seen by rotating the vertical and horizontal axes. Discontinuities in the step

functions occur at quantity levels which require a jump in price to accommodate a changing quantity

supplied or demanded.
5An order may also contain parameters defining the time when the order begins execution and the

time when execution stops. We assume for simplicity that orders are for immediate execution and are

good until canceled. We conjecture that it would be possible to develop more complex order types that

would allowUmax to be a function of other market characteristics such as trading volume, price volatility,

or some measure of market liquidity.
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vices over time. The trading speed or flow demand U
(

p (t )
)

is a function of the the

market clearing price p (t ) given by

U
(

p (t )
)

≔





Umax if p (t ) < PL,
(

PH−p (t )
PH−PL

)

Umax if PL ≤ p (t ) ≤ PH ,

0 if p (t ) > PH .

(2)

If the price is strictly below PL , the trader buys at rateUmax. If the price is strictly above

PH , the trader does not trade. If the price is between PL and PH , the demand schedule

is interpolated linearly, making its slopeUmax/(PH − PL ).

For an order placed at time t0, the cumulative quantity executed by time t > t0 is

given by the integral

Q (t0, t ) ≔
∫ t0+t

t0

U
(

p (τ)
)

dτ. (3)

If the order is canceled at time t without being filled, thenQ (t ) < Qmax. If the order has

been filled at time t , thenQ (t ) = Qmax.
6 If the price remains low enough so that that

order is executed at maximum rateUmax, the order will be fully executed exactly after

time t = Qmax/Umax (hours). If the price fluctuates above and below PL and PH , the full

execution will take longer than timeQmax/Umax . If the price stays above PH , the order

will not be executed at all.

Continuous scaled limit orders are different from the standard limit orders used on

current exchanges in two important ways. First, trading is made continuous in time

and quantity by converting stocks α(t0, t )Qmax (shares) to flowsU (t ) (shares per hour).

This limits the rate at which orders can be executed. Second, the quantity is made

a continuous function of a uniquely defined market clearing price by converting step

functions (for shares) into piecewise linear functions (for shares per hour). Continuous

scaled limit ordersmake an allocation rule unnecessary, even when the quantitiesQmax

(shares) andUmax (shares per hour) are multiples of a minimum lot size and prices PH

and PL are multiples of a minimum tick size.

A set of continuous scaled limit buyordersdefines anaggregateflow-demandsched-

6The notation in (2) and (3) is also meant to be intuitive, not mathematically rigorous. More formally,

the quantitiesUmax , Pmax, andU (p (t )) should have subscripts indicating the order to which they apply.
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ule, denotedD
(

p
)

, as the sum of the flow demandU (p ) of all buy orders. An aggregate

demand schedule is the graphof a continuous,weaklymonotonically decreasing,piece-

wise linear function of price p , with possible kinks at integermultiples of theminimum

tick size. An aggregate supply schedule, denoted by S
(

p
)

, is defined analogously to a

demandschedule as thegraphof a continuous,weaklymonotonically increasing, piece-

wise linear function.

Suppose that the aggregate demand and supply schedules intersect at a pointwhere

either of the two is not flat. Then the excess demand schedule D
(

p
)

− S
(

p
)

is strictly

decreasing in the neighborhood of the intersection. There exist a “best bid” price PB

and “best ask” price PA , both on the tick grid, where PA is one tick size larger than PB ,

and there is excess demand at the best bid and excess supply at the best ask price given

by

D (PB ) − S (PB ) ≥ 0 and S (PA ) − D (PA ) > 0. (4)

Define the relative order imbalance ω ∈ [0, 1] by

ω ≔
D (PB ) − S (PB )

D (PB ) − S (PB ) + S (PA ) −D (PA )
. (5)

Then themarket clearing price p (t ) is uniquely defined by

p (t ) = PB + ω (PA − PB ) . (6)

Intuitively, theprice is aweighted averageof the twopricesPB andPA , withweights 1−ω

and ω proportional to the excess demand and supply at these prices.7

Figure2depictsmarket clearingwith continuous scaled limit orders. Both thedown-

ward sloping demand schedule and upward sloping supply schedule are piecewise lin-

7If the demand and supply schedules intersect at overlapping flat sections, then we adopt the conven-

tion that the market clearing price is the midpoint of the overlapping interval. We do not expect this to

be the case. Suppose the demand and supply schedules intersect over a horizontal interval. Then each

buyer could increase a minuscule amount of demand at the lower price of the interval, forcing the price

down. Similarly, each seller could increase aminuscule quantity of supply at the higher price of the inter-

val, forcing the price up. Since a flat demand schedule around the intersection is not an optimal response

to a flat supply schedule and vice versa, we expect the demand and supply schedules almost always to

intersect at a single point which uniquely defines the market clearing price p (t ) as above.
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ear functions of price with knot points at which prices are integermultiples of themin-

imum tick size of $0.01 and quantities are integer multiples of one share per hour. The

downward slopingpiecewise linearflow-demandschedule and theupward slopingpiece-

wise linear flow-supply schedule intersect at a unique price and quantity. The unique

price, $41.246 per share, is not an integer multiple of minimum tick size. The unique

quantity, 20 800 shares per hour, happens to be an integer number of shares per hour,

but this is not generally the case.
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Figure 2: Market Clearing with Continuous Scaled Limit Orders

In theUnitedStates, bid andaskprices arepublished in integermultiplesof onecent.

Although there is technically no bid-ask spread with continuous scaled limit orders, the

exchange can define as its “best bid” and “best ask” for public quotation purposes the

prices obtained by rounding themarket clearing price down and up to the nearest one-

cent tick increments. These prices correspond toPB andPA in equations (4), (5), and (6).
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In Figure 2, there is net excess demand of 24 000 shares per hour at the best bid price of

PB = $41.24 per share and net excess supply of 16 000 shares per hour at the best offer

price of PA = $41.25 per share.

Unlikewith standard limit orders, all continuous scaled limit orders are treated sym-

metrically and executed simultaneously. With standard limit orders, ordermatching re-

spects price and timepriority. With continuous scaled limit orders, all flowdemand and

supply is satisfied at the market clearing price.

2 Economics and Technology

Trading involves real resource costswhicharebornebothby theexchangeandby traders.

There are huge economies of scale in processing messages, operating a matching en-

gine, and disseminating and processing trading information. These economies of scale

imply that exchanges canprocess ordersmore efficiently than traders, andhigh-volume

traders can process ordersmore efficiently than low-volume traders. Continuous scaled

limit orders have the economic effect of replacing messages which traders send to ex-

changes with instructions that are carried out inside the exchange’s matching engine.

Thismakes tradingmore efficient in amanner that benefits small traders relativelymore

than large traders. In this way, continuous scaled limit orders reduce the deadweight

costs of the high-frequency-trading arms race in a direct and more efficient manner

than other indirect mechanisms, including frequent batch auctions and random order-

processing delays (discussed in section 4).

2.1 Message Costs

As discussed in Section 3 below, theory suggests that traders would use continuous

scaled limit orders. Today’s matching engines are based on standard limit order books,

not continuous scaled limit orders. Using standard limit orders to mimic the effect of

continuous scaled limit orders requires sending thousands of standard limit orders to

trade tiny quantities. An infrastructure of costly computers, communication lines, soft-

ware, and professional skills is needed to handle huge numbers of messages.
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Message costs vary across traders. Technologically unsophisticated retail traders do

not have access to the best technologies; as a result of high message costs, they place a

small number of standard limit orders. Technologically sophisticated large institutions

do have access to such technologies; as a result of lowmessage costs, it is economically

feasible for them to mimic continuous scaled limit orders with thousands of standard

limit orders. High frequency traders have the fastest technologies; they use their speed

advantage to pick off other traders’ orders, gain time priority in standard limit order

books, and cancel their own limit orders before other traders can pick them off.

Large institutional investors often attempt tomatch VWAP or TWAP over some time

interval byplacingmany small orders to participate in a constant fraction of trading vol-

ume and to match the prices at which other traders are trading. TWAP is easier to im-

plement than VWAP because VWAP implementation requires forecasting random total

volumeminute byminute over the horizon of execution. VWAP and TWAP are, in prac-

tice, quite similar. A TWAP order corresponds precisely to a fully executable continuous

scaled limit order. It would be possible to define amodified formof continuously scaled

VWAP orders to restrict execution to a maximum fraction of contemporaneous volume

rather than a maximum number of shares. In principle, a VWAP version of continuous

scaled limit orders would reducemessage costs if traders otherwisewould submitmes-

sages to change the execution rate of their orders as volume fluctuated in the market.

By moving the costs from traders to the matching engine, continuous scaled limit

orders can level theplayingfield for large traders and small tradersbyallowingall traders

to slice their orders into small pieces automatically and gradually trade toward their

target inventorieswithout being equippedwith large bandwidth and processing power.

Order-shredding strategies like VWAP and TWAP suggest that institutional investors try

tomimicwithmanymessageswhat continuously scaled limit orders are designed to do

more efficiently with one message.

The tradeoff traders face between incurring lowermessage costs for large orders and

incurring highermessage costs for order shredding can be seen in data. Since the intro-

duction of a one-cent tick size in 2001, O’Hara, Yao and Ye (2014) and Kyle, Obizhaeva

and Tuzun (2016) show that average trade size has declined dramatically. Improved

computer technology during this period suggests that the decline in trade size is the
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result of declining message costs making it easier to mimic the outcome of continuous

scaled limit orders.

While falling message costs make it cheaper for all traders to mimic continuous

scaled limit orders, the inequality in message costs across traders maintains an un-

leveled playing field in which small differences in message costs can have large differ-

ences in market outcomes.

Since retail traders have highermessage costs than institutional investors, theymay

adopt execution strategies which require fewer messages but result in worse prices ob-

tainedon executedorders. These strategies includeplacing executableorders to hit bids

or lift offers immediately, giving up a large price concession than could be obtained by

placing limit orders close to the market and adjusting limit prices over time. They also

include leaving resting limit orders away from the market, where they suffer a risk of

being picked off if market prices change quickly over a short period of time.

Since high frequency trading requires placing and canceling many orders, high fre-

quency traders must have very lowmessage costs to be competitive. It is reasonable to

conjecture that high frequency traders achieve lowmessage costsbyexploitingeconomies

of scale and thus submit smaller orders than other traders. Consistent with this conjec-

ture, Kirilenko et al. (2017) show that high-frequency traders have trades that are half as

large (five versus ten contracts) as other traders.

High frequency traders also have faster speeds (lower latency) than other traders.

Low message costs and fast speeds allow high frequency traders to make small profits

on trades with other traders. Their profits per share or per contract are higher when

trading against traders with relatively highermessage costs or relatively lower speed. In

a study of high frequency trading in the S&P E-mini futures market, Baron, Brogaard

and Kirilenko (2012) find that high frequency traders earn profits when taking the other

side of trades with both retail (low volume) and other (higher volume) traders, but they

earn larger profits per contract trading against retail traders than others. These results

are likely due to relatively higher message costs and lower speeds making it difficult for

retail traders to time their trades strategically.

Even if technological progress reduces absolute message costs for institutional in-

vestors so much that the message cost savings of using continuous scaled limit orders
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becomes small relative to sending many messages to a standard limit order book, the

relative differences in speed would allow high frequency traders to continue to trade

profitably in standard limit order books based only on using their relative speed advan-

tage.

2.2 Matching Engine

To make it easy for both sophisticated and unsophisticated users to submit demand

schedules, the user interface might use intuitive units. We require the price limits PH

and PL to be integermultiples of theminimum tick size of one cent, the order sizeQmax

to be an integer number of shares, and the maximum rate of tradingUmax to be an in-

teger number of shares per hour. These assumptions make the market supply and de-

mand schedules piecewise linear functions with knot points at prices that are integer

multiples of minimum tick size and quantities that are integer numbers of shares per

hour.

For the matching engine to calculate the market clearing price and the quantities

each trader is allocated, some degree of discretization is necessary. For illustrative pur-

poses, we assume that quantities are measured as nanoshares (10−9 shares), prices are

measured in microdollars (10−6 dollars or ten-thousandths of a cent per share), time

is measured in milliseconds (10−3 seconds), and maximum trade rates are measured

in nanoshares per millisecond. These units are chosen so that quantities, prices, time,

and trade rates can be roundedoff to integer numbers of nanoshares,microdollars,mil-

liseconds, and nanoshares permillisecondwith little loss of economic significance. Im-

portantly, such discretization for internal calculations is economically different from

the discreteness in the current market design because gains from gaming become neg-

ligible. As we discuss next, these units and rounding conventions allow the matching

engine to perform fast integer arithmetic calculations.

Suppose a customer submits a continuous scaled limit order to buy Qmax = 8000

shares at maximum rateUmax = 4000 shares per hour between limit prices PL = $41.25

and PH = $41.50 per share. Let K denote the minimum tick size, say $0.01 per share,

and write prices as P = nK where n is a positive integer. If the stock price is $41.35 per
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share, then n = 4135. LetU = (UM I N , . . . , UM AX ) denote a vector defining the order’s

trade rate Un = U (p ) when p = nK . For example, if M I N = 0 and M AX = 10 000,

thenU defines trade rates at all increments of one cent from p = $0.00 to p = $100.00

per share. Then the limit order to buy at maximum rateUmax between PL = nL K and

PH = nH K , consistently with equation (2), can be written

Un ≔





Umax if n < nL,
(

nH−n

nH−nL

)

Umax if nL ≤ n ≤ nH ,

0 if n > nH .

(7)

Within the matching engine, the trader’s demand schedule in equation (7) can be

expressed as a vector Û = (ÛM I N , . . . , ÛM AX ), where Ûn rounds the quantityUn to an

integer number of nanoshares per millisecond in a computationally convenient man-

ner discussed next. The hat-notation indicates quantities rounded to integers in the

matching engine. When the user places a continuously scaled limit buy order at a rate

of 4000 shares per hour between $41.25 and $41.50 per share, each one-tick price in-

crement of one cent between these prices theoretically changes the rate of buying by

∆U = Un+1 −Un = 44 444.44444 . . . nanoshares per millisecond.8. For internal calcula-

tions, this is rounded to the integer rate of∆Û = 44 444 nanoshares permillisecond per

one-cent tick. Using this approximation, the order in (7) can be written

Ûn ≔





(nH − nL ) ∆Û if n < nL,

(nH − n) ∆Û if nL ≤ n ≤ nH ,

0 if n > nH ,

(8)

where the trade rates Ûn are integer numbers of nanoshares per millisecond. Note that

(nH − nL ) ∆Û , equivalent to 3999.96 shares per hour, is approximately equal to Umax

(4000 shares per hour), but these numbers may differ by more than one nanoshare per

second due to rounding conventions. There is little economic significance associated

with such rounding. At the fastest possible execution rate, it would take a fraction of a

second longer than one hour to trade 4000 shares.

8This amount is calculated as 4000 · 109−3/(602 · 25).
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Given an integer vector of demand schedulesÛ for all traders, the aggregate demand

schedule can be calculated by adding the vectors representing all demand schedules

element-by-element. The computational complexity of keeping track of piecewise lin-

ear demand schedules would be much greater if the knot points occurred at arbitrary

prices rather thanat integermultiplesof a fixed tick size. Since computersare optimized

to perform integer vector operations efficiently, such calculations are performed at very

low cost. For optimized implementation, the calculations may by further simplified by

exploiting the sparse, simple structure of the vectors Û .

With supply schedules defined analogously to demand schedules, it is computation-

ally easy to calculate the best bid and ask prices because demand schedules are down-

ward sloping and supply schedules are upward sloping. Bisection is an efficient algo-

rithm for this purpose: Given a high price with excess supply and a low price with ex-

cess demand as a starting guess, choose the price half-way in between as the next guess,

observe whether there is excess demand or supply at this price, then update the initial

guess and continue guessing until the best bid PB and best offer PA are calculated in a

manner consistent with (4). These calculations have computationally trivial cost.

As an order executes, the theory implies that executed quantities change continu-

ously as functions of time. As a practical computationalmatter, executed quantitieswill

be calculated based on the minimum increment in time stamps, which we are assum-

ing tobe onemillisecond. As long as the exchange receives nonewmessageswhich add,

cancel, or change existing orders, and as long as all existing orders arenot fully executed,

each executable order in the limit order book will execute in small constant increments

as the matching engine’s clock ticks. When newmessages arrive or existing order finish

executing, market clearing prices and trading rates are recalculated.

In calculating market clearing prices and quantities, it remains necessary for the

matching engine to deal with some rounding of fractional prices and quantities so that

they can be expressed as integers. Write the bid price as PB = nB K and the ask price

as PA = nAK (with nA = nB + 1). Suppose the bid and ask prices are within the order’s

upper and lower limits (nL ≤ nB < nA ≤ nH ), and let ÛB ≔ (nH − nB )∆Û denote

an order’s demand rate at the bid price. If the interval between price and quantity re-

calculations is ∆t (such as seven milliseconds), then the theoretical number of shares
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∆Q = Q (t , t + ∆t ) traded by a limit buy order over the time interval [t , t + ∆t ] is given

by

∆Q =
(

ÛB − ω · ∆Û
)

∆t . (9)

Since the fraction ω in (5) is the ratio of two arbitrary non-negative integers, it is

an arbitrary rational number. We require that ω is rounded to 4 decimal places and let

ω̂ denote the rounded result, so that the market clearing price is approximated as an

integer multiple of 10−6 dollars, or, equivalently, 10−4 cents. With ω rounded to ω̂, the

price is given by

p̂ (t ) = PB + ω̂ · (PA − PB ) = PB + ω̂ · K . (10)

This roundedprice p̂(t ) is an integermultipleof 10−6dollarsbecausePB andPA aremea-

sured in cents (integer multiples of 10−2 dollars) and the factor ω̂ is an integer multiple

of 10−4. The trade rate Û (p̂ (t )) is calculated by rounding the implied rateÛB − ω̂ ·∆Û to

an integer number of nanoshares per millisecond.9 The number of shares bought over

the time interval ∆t (an integer multiple of milliseconds) is

∆Q̂ = Û (p̂ (t )) · ∆t ≈
(

ÛB − ω̂ · ∆Û
)

· ∆t . (11)

Because of rounding, the aggregate quantity bought by all buyers will not be exactly

equal to the aggregate quantity sold by all sellers. To deal with this issue, the exchange

itself can take the difference—a few nanoshares—into its own inventory each millisec-

ond. To move the imbalances toward zero, the exchange may calculate the rounded

quantity ω̂ by rounding the fraction ω up or down in the direction which reduces its

cumulative inventory. Obviously, these inventories are likely to be economically incon-

sequential.

At the end of each day, the cumulative quantity traded by each customer is an inte-

ger number of nanoshares that is unlikely to be an exact integer number of shares for

partially filled orders. One way to deal with the fractional shares is to clear and settle

fractional shares. If, alternatively, shares must be cleared and settled as integer num-

9While ÛB is an integer number of nanoshares per millisecond, rounding is necessary because ω̂ ·∆Û

may have a fractional number of nanoshares per millisecond.
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bers of shares, we propose the following approach. Let X denote the net purchases or

sales a trader makes, calculated at the end of the day based on full or partial execution

of all orders the trader has submitted. The quantityX can be expressed as the sumof an

integer portion and fractional part ǫ by writing X = int(X ) + ǫ. To clear the fractional

part ofX , we propose cash-settling the fraction ǫ by randomlybuying 1−ǫ shares or sell-

ing ǫ shares in amanner such that the expected fractional share traded is approximately

zero. This insures that traders have little incentive to game the end-of-day settlement

of these fractional shares.10

Since theprice p̂ (t ) and thus the trading ratesÛ
(

p̂ (t )
)

areuniquelydefined, traders

canaccurately infer thequantities they trade fromapublic feedofprices,or equivalently

from a time-stamped data feed providing the history of PB , PA , and ω̂ in (5). Exchanges

neednot sendconstant updatesofprices andquantities for each fractional sharebought

by each order. Sending confirmation messages at infrequent time intervals, like one

second or oneminute,wouldbe sufficient. This conserves bandwidthand computation

costs because sending and receiving messages is computationally costly.

For standard limit orders, the situation is entirely different. Of course, when a trader

sees a price lower than the price on a limit buy order, the trader can infer that his or-

der was fully executed and expect a prompt confirmation of full execution. But when

a trader observes the asset trading at the exact limit price on his order, the trader does

not know whether any portion of his own order was executed. Furthermore, even if the

trader also observes the quantity traded at the reported price, the trader cannot infer

from a public feed whether any of this quantity represents a portion of his own order

unless the trader knows his exact position in the queue of time priority. As a conse-

quence of time priority, it becomes necessary for an exchange offering standard limit

10One approach is the following simplemechanism: Pick two traders randomly from the pool of traders

with fractional shares. Suppose one trader has a fraction ǫ1 shares and the other trader has a fraction ǫ2
shares with 0 ≤ ǫ1 < 1 and 0 ≤ ǫ2 < 1. There are two cases. If (case 1) ǫ1 + ǫ2 < 1, then trader 1 buys ǫ2
shares fromtrader 2withprobability ǫ1/(ǫ1+ǫ2), and trader 2buys ǫ1 shares fromtrader 1withprobability

ǫ2/(ǫ1+ǫ2). Then the expected quantity traded by each trader is zero, and there can beno gaming. If (case

2) ǫ1 + ǫ2 > 1, then trader 1 sells 1 − ǫ2 shares to trader 2 with probability (1 − ǫ1)/(1 − ǫ1 + 1 − ǫ2) and
trader 2 sells 1− ǫ1 shares to trader 1 with probability (1− ǫ2)/(1− ǫ1 + 1− ǫ2). As a result of this process,
one trader has a fractional share and the other has an integer number of shares. The traderwith fractional

shares is added back to the pool and the process repeated until all traders have disposed of all fractional

shares.
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orders to send numerous messages to traders so that the traders can know the cumu-

lative quantities traded on partially executed orders. The cheapest way to provide this

information is to send each trader a message reporting partial execution of any order.

Thismakes it necessary for traders in the back of the queue to infer from non-receipt of

amessage that nothinghas happened to their order. If these confirmationmessages are

sent more slowly thanmarket-wide prices and quantities are executed, the trader must

deal with ambiguity concerning partial execution while waiting for a confirmation to

arrive or not to arrive. If confirmation messages are sent more quickly than market-

wide prices and volumes are updated, then traders receiving confirmation of partially

executed orders have potentially valuable information about market conditions before

other traders and might use this information to their own advantage at the expense of

other traders. For these reasons, continuously scaled limit orders are not only compu-

tationallymore economical than standard limit orders, but they also create amore level

playing field concerning timely access to information about currentmarket conditions.

The way in which bids, offers, traded quantities, and trade prices are reported pub-

licly is highly regulated. In U.S. markets, bids and offers have historically been reported

in integer multiples of one cent, and quantities are reported in multiples of 100 shares.

An exchange offering continuous scaled limit orders might reportPB and PA as bid and

ask prices and report the exact price p̂ (t ) every time it changed (time-stamped to mil-

liseconds). This would allow traders to infer from public feeds the exact cumulative

quantities executed on their orders. Since there is no instantaneous market depth in a

continuous limit order book, reporting the rate at which depth is supplied over time in a

continuous limit order book does not fitwithin the current price reporting structure. An

exchange offering continuous scaled limit orders could offer its own private feed pro-

viding—at a minimum—the price p̂ (t ), the rate of tradeD (p̂ (t )) = S (p̂ (t )), and excess

flow demand and excess flow supply at best bid and offer prices PB (t ) and PA (t ), re-

spectively. The exchanges’ private feed might also supply information about the shape

of market demand and supply schedules away from the best bid and offer prices.

Operating a matching engine requires sending and receiving, encrypting and de-

crypting, confirming and reconfirming, sorting and queuing, and matching numerous

messages related to placing,modifying, canceling, and confirming full or partial execu-
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tion of orders. The computational costs of such message processing, incurred by both

exchange and its customers, are much greater than the computational costs of running

the matching engine itself. By automatically spreading order execution out over time,

continuous scaled limit orders replace messages that shred orders with internal calcu-

lations within the matching engine. Since making internal calculations is dramatically

cheaper than processing messages, exchanges offering continuous scaled limit orders

will reduce both their own costs and the costs of customers if the customers demand

the gradual execution of orders that continuous scaled limit orders make possible.

2.3 High Frequency Trading

Continuous scaled limit orders level the playing field by neutralizing the speed advan-

tage relatively faster traders enjoy in markets where matching engines match standard

limit orders. In a limit orderbookwith standard limitorders, speedbenefits faster traders

in three ways: (1) It allows faster traders to pick off resting limit orders when prices

change by letting faster traders hit bids and lift offers faster than slower traders can

cancel resting bids and offers. (2) It allows faster traders to avoid being picked off by

canceling their own stale resting limit orders faster than slower traders can hit them. (3)

It allows faster traders to gain the best position in the time-priority queue at the best

bid and offer prices by allowing them to add orders to the limit order bookmore quickly

than slower traders. These speed advantages are a function of relative speed, not ab-

solute speed; speeding up all traders by a factor of ten does not change the economic

magnitude of these advantages.

Example of Standard Limit Order Book. To illustrate these advantages, consider the

following typical hypothetical scenario in a standard limit order book. The best bid for

a stock is $39.99 and the best offer price is $40.01. Both of these bids and offers rep-

resent orders previously placed by the fastest high frequency trader in the market. An

institutional investor would like to purchase 5000 shares bymaking 50 purchases of 100

shares each at a gradual rate over time. The midpoint is an attractive price at which to

buy, so the institutional investor places a standard limit order to buy 100 shares at the
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prevailing midpoint of $40.00. The high frequency trader bidding at $39.99 also thinks

$40.00 is an attractive price at which to buy, so the high frequency trader submits a limit

order to buy 100 shares at the same price at approximately the same time. Because his

technology is faster, the high frequency trader’s order reaches the limit order book be-

fore the order of the institutional investor. After both orders have arrived into the limit

order book, there are 200 shares at the new best bid of $40.00 and 100 shares at the best

offer of $40.01.

Next, a different institutional seller submits a limit sell order to sell 100 shares at

$40.00 per share. Since the high frequency trader’s buy order arrived into the limit or-

der book first, it has time priority and therefore is executed against the incoming order.

The original institutional buyer, frustrated by his inability to buy at $40.00, places an

executable limit order to buy at $40.01. This order executes against the fastest high fre-

quency trader’s sell order that was in the limit order book to beginwith. The fastest high

frequency trader has now bought 100 shares at $40.00 and sold 100 shares at $40.01,

making a profit of $1.00. The fastest high frequency trader was able to make this $1.00

profit because his limit orders reached the limit order book faster thanother traders and

gave him time priority on both orders. Due to his speed disadvantage, the institutional

investor missed out on the trade at $40.00 and paid $40.01 instead, incurring $1.00 in

additional transactions costs.

Next, new informationwhich reduces the value of the asset suddenlyhits themarket

in such a way that all traders observe this information approximately simultaneously.

The new information reduces the value of the asset by about $0.20, from about $40.00

to about $39.80. At approximately the same time, the fastest high frequency trader sends

amessage to cancel his limit buy order at $39.99 and submits a limit sell order to hit the

institutional investor’s bid at $40.00; the institutional investor sends a message to can-

cel his limit buy order at $40.00; and other slower high frequency traders submit limit

sell orders at prices of $40.00 or lower. Because his technology is slower, the institu-

tional investor’s order is hit by the fastest high frequency trader before he can cancel it.

The fastest high frequency trader is successful in canceling his limit buy order at $39.99

because he is faster than the other high frequency traders. As a result of his speed, the

fastest high frequency tradermakes $0.20 on 100 shares, or $20.00, by hitting the institu-
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tional investor’s bid. The institutional investor loses the sameamount as anopportunity

cost.

This example illustrates how high frequency traders can use their faster speed to (1)

pick off other traders’ orders, (2) cancel their own orders, and (3) gain time priority in

a standard limit order book. These three advantages are complimentary. Slower high

frequency traders will be hesitant to compete for time priority with the fastest high fre-

quency traders because they know their orders aremore likely to be picked off if market

conditions change. Consistentwith this analysis,YaoandYe (2015)find that small stocks

with relatively large tick size attract high frequency traders more than large stocks with

relatively small tick size.

Some exchanges use “pro rata” allocation rather than timepriority to allocate trades

when the number of buyers does not match the number of sellers at a given price. If

pro rata allocation had been used in the above example, then both the fastest high fre-

quency trader and the institutional investorwouldhavepurchased50 shares rather than

the fastest high frequency traderhavingpurchased 100 shares under a timepriority rule.

Pro rata allocation gives traders incentives to place larger orders. Thus, the fastest high

frequency tradermight haveplaced an order to buy 900 shares rather than 100 shares, in

which casehewouldhavebeen allocated 90 shares and the institutional investor only 10

shares. Putting 900 shares instead of 100 shares into the limit order bookmultiplies by a

factor of 9 the losses suffered from being picked off. Taking this into account, the insti-

tutional investor might choose not to place an order for 900 shares himself because he

knows his order has a higherprobabilityof beingpickedoff due tohis slower speed. Like

timepriority, apro rate allocation rule also rewards the fastest traders for their speedand

deters slower traders from competing with them.

Example of Continuous Limit Order Book. An exchange offering continuous scaled

limit orders would dramatically lower the rents that high frequency traders can earn

due to their speed. To illustratehow thisworks, consider another hypothetical example.

An institutional buyer and an institutional seller both submit continuous scaled limit

orders. The buyer places an order to buyQ BUY
max = 10 000 shares between P BUY

L = $40.00

and P BUY
H

= $40.01 at maximum rate U BUY
max = 3600 shares per hour (one share per
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second). The seller places an order to sell Q SE LL
max = 10 000 shares between P SE LL

L =

$40.00 and P SE LL
H

= $40.01 per share at maximum rateU SE LL
max = 3600 shares per hour

(also one shareper second). As longas thebuyer and the seller are theonly traders in the

market, the equilibrium price is the midpoint $40.0050, and the buyer and seller trade

with each other at a rate of 1800 shares per hour (1/2 share per second).

Next, a high frequency trader tries to get between the buyer and the seller by buying

between P H FT
L = $40.00 and P H FT

H = $40.01 shares at maximum rate U H FT
max = 7200

shares per hour (2 shares per second). Since

D (PB ) = 10 800, D (PA ) = 0, S (PB ) = 0, S (PA ) = 3600, (12)

we obtain

ω =
D (PB ) − S (PB )

D (PB ) − S (PB ) + S (PA ) − D (PA )
=

3

4
, p (t ) = (1 − ω)PB + ωPA = 40.0075.

(13)

The price increases by one-quarter-cent from $40.0050 to $40.0075. The higher price

reduces the buyer’s rate of buying fromU BUY
= 0.50 shares per second toU BUY

= 0.25

shares per second and raises the seller’s rate of selling from U SE LL
= 0.50 shares per

second toU SE LL
= 0.75 shares per second. Thehigh frequency trader buysU H FT

= 0.50

shares per second at $40.0075. As a result of his participation, the high frequency trader

drives the price above the midpoint, but does not change the sum of the buyer’s rate of

buying and the seller’s rate of selling, which is 1 share per second.11

Continuous scaled limit orders dramatically limit the gains frompicking offand can-

celing orders. As before, supposemarket conditions change and all traders suddenly re-

ceive information that the value of the asset has fallen by 20 cents. The high frequency

trader cancels his buy order andplaces anorder to sell at a veryhigh rate between $40.00

and$40.01. Thisdrives thepricedownarbitrarily close to $40.00butdoesnot let thehigh

frequency trader sell at a rate faster thanone shareper second. The institutional investor

also cancels his order, but thehigh frequency trader’s sell order arrives faster than the in-

11In this hypothetical example, the sum of the buyer’s rate of buying and seller’s rate of selling is un-

changedbecause thebuyer and seller bothhave the samevalueof their trading ratesU BUY
max = 1 = U SE LL

max =

1 share per second. With different assumed values, the combined rate would be different.
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stitutional investor’s cancelation. The high frequency trader earns a profit proportional

to the difference in message processing speeds. If the institutional investor is one sec-

ond slower than thehigh frequency trader, then thehigh frequency tradermakes aprofit

of $0.20 per share on one share, or $0.20; these profits are 100 times less than the profits

on the corresponding example with standard limit orders. More likely, the institutional

investor can cancel the order only a fraction of a second more slowly than the high fre-

quency trader’s order arrives. If the institutional investor is slower by 50 milliseconds,

his total losses are $0.01, or 2000 times less than with standard limit orders.

EconomicEfficiencyandWinner-Take-All. Standard limit orderbooks create awinner-

take-all race in which gains go to the fastest trader. As improved message processing

technology increases the speed of all traders, the winner-take-all payoffs do not change

if traders do not otherwise change how they trade. The winner-take-all system encour-

ages technological investment in speed but does not improve the efficiency of the econ-

omy (Harris, 2013; Li, 2014; Biais, Foucault and Moinas, 2015; Budish, Cramton and

Shim, 2015).

As technology improves, traders may shred orders into tinier and tinier pieces un-

til the limits of minimum tradable lot size are reached; theymay also revise their orders

more andmore frequently, subject to constraints imposedbyminimumtick size. Ifmin-

imum lot size and minimum tick size are decreased to accommodate the demand for

smaller orders and smaller price increments, the number of messages will explode as

message costs fall. The result will be that falling message costs do not create economic

efficiency by reducing the aggregate economic costs of a given number ofmessages. In-

stead, the result will be continued large dollar investments in message technology to

increase speed and accommodate an ever-increasing number of messages.

With continuous scaled limit orders, thewinner-take-all rewards to being the fastest

trader are almost eliminated. If the speed of all traders doubles, the gains from picking

off and canceling continuous scaled limitorders are halved. As a result of improvements

in technology since the beginning of the century, the potential rents earned from using

faster speed to compete with continuous scaled limit orders have already become neg-

ligible, and they will become more negligible in the future. The negligibility of these

25



gains is due to the fact that continuous scaled limit orders allow traders to trade gradu-

ally without incurring highmessage costs.

With continuous scaled limit orders, high frequency traders are unlikely to disap-

pear. Cross-market arbitrage opportunities will still exist, and high frequency traders

will likely compete tomake such arbitrage opportunities disappear quickly, holding in-

ventories for short periods of time. Continuous scaled limit orders improve the effi-

ciency with which these socially useful arbitrage services are performed by reducing

message costs and making it cost-effective for slower traders to participate in provid-

ing trading services which would otherwise be too technologically expensive for slow

traders to provide.

3 Theoretical Equilibrium Trading Strategies

Recent developments in theoretical modeling of financial markets support continuous

scaled limit orders. Before the 1970s, finance and economics researchers generally be-

lieved that the stock market was the best example of perfect competition operating in

the economy. The concept of perfect competition requires that each trader takes the

price as given, acting as if large quantities could be bought at the same price as large

quantities could be sold. If all traders were perfectly competitive, therewould be no de-

mand for the use of continuous scaled limit orders. Instead, all traders would want to

trade immediately the quantity which would move their inventories to optimal levels.

Froma theoreticalmodelingperspective, it is tricky to explainhow trading canmove

prices in models of perfect competition. The easiest modeling shortcut is to assume

that trading does not move prices at all; instead, new information exogenously moves

supply and demand schedules up anddown, but buying and selling large quantities has

no effect on prices. We think that the belief that trading in the stock market reflects

the forces of perfect competition—and the companion belief that information and not

tradingmoves prices—is an empty ideology.

Taking the view that themarket is perfectly competitive,GrossmanandMiller (1988)

argue that market liquidity is determined by the supply and demand for immediacy.

Customers exogenously demand immediacy: they are willing to pay whatever price the

26



market makers charge for immediate execution of their desired quantity. This price re-

flects a discount or premium to compensatemarket makers for the risk of bearing pos-

itive or negative inventories. If the market were to reopen for another round of trading,

there would be no trade. In this sense, a competitive model like this generates no de-

mand for continuous scaled limit orders, which spread tradingout overmultiple rounds

of trading.

As Black (1995) discussed, many theoretical models such as Grossman and Miller

(1988) imposeunrealistic restrictionson trading strategies. GrossmanandStiglitz (1980)

assumeone roundof trading. Kyle (1985)preventsnoise traders from timing their trades,

prevents market makers from trading on information, and prevents informed traders

from submitting limit orders. Glosten and Milgrom (1985) and Grossman and Miller

(1988) require customers to trade through dealers without posting their own limit or-

ders. Admati and Pfleiderer (1991) only allow uninformed traders to submit sunshine

orders. Glosten (1994) does not allow customers to switch from market orders to limit

orders.

Traders themselves have always known that trading costs are economically signifi-

cant. Historically, high trading costs were the automatic result of monopolistically fixed

commissions—whichwere not deregulateduntil the 1970s—andprivileges of exchange

memberships, which gave specialists and other members access to better trading op-

portunities than nonmembers. More importantly, large traders have long realized that

execution of very large trades moves prices and results in market impact costs much

larger than commissions and bid-ask spread costs. Sophisticated asset managers in-

vest significant resources measuringmarket impact costs and calculating the effects of

transactions costs on optimal trading strategies.

Inmodels of imperfect competition, traders are allowed to trade strategically, taking

into account their price impact. When executable (market) orders or non-executable

(limit) orders are allowed with one round of trading, Kyle (1989) shows that imperfect

competition induces traders to restrict the quantity they trade to a fraction of the com-

petitive demand, just like a product supplier with market power restricts output. Kyle

and Lee (2017) show that themarketmay stay imperfectly competitive and traders con-

tinue to restrict their quantity even as infinitelymany traders competewithone another.
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This shading of quantities in one round of trading suggests that if trade were to take

place over multiple rounds, traders would choose to spread their trading out over time.

In the dynamic model of Kyle (1985), an informed trader is restricted to submitting

market orders and not allowed to submit limit orders. He exercises market power by

trading gradually over time; if he were a perfect competitor, he would trade huge quan-

tities immediately.

Our proposal for continuous scaled limit orders is theoretically strongly grounded in

recent dynamic tradingmodels. Kyle, Obizhaeva andWang (2017) show that traders use

limit orders to trade gradually to limit price impact in a continuous-timemodel. Since

inventories are shown to be differentiable functions of time, the results map directly

into the trading speed U (t ) associated with continuous scaled limit orders. The simi-

larmodels of Vayanos (1999) and Du and Zhu (2017) have a discrete-time settingwhich

allows traders to trade at evenly spaced time intervals. This discrete approach makes

it possible to study how the frequency with which auctions are held affects the equi-

librium. As the time between rounds of trading goes to zero, the discrete-time model

converges to the corresponding continuous-timemodel.

The models place essentially no restrictions on how traders are allowed to trade.

There is no exogenousdemand for immediacy. Traders arenot required to trade through

dealers. Since trading is anonymous, traders cannot reveal their private information

or commit to being uninformed. Instead, they can attempt to bluff, front-run, or oth-

erwise strategically throw their weight around in the market to affect the expectations

and the trading of others. All traders trade rationally given their beliefs. They apply

Bayes Law correctly, take into account their price impact correctly, and trade optimally

to limit price impact costs.

In these theoretical models, there exists an equilibrium in which traders trade grad-

ually using limit-order strategies very similar to our proposed continuous scaled limit

orders. Traders face temporaryandpermanentprice impact costs. Each trader correctly

conjectures that theprice is a functionof his own inventory (permanent impact) and the

rate at which he is buying (temporary impact). Because traders have private informa-

tion, thepricemoves against the traderdue toadverse selection. Thismeans that buying

pushes prices up and selling pushes prices down. Just like textbook supply and demand
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schedules, which are flows over time, the extent to which the price moves against the

trader increases in the rate at which a trader buys or sells; buying a given quantity over

a shorter period of time requires paying a higher price because more urgency signals

stronger private information. To reduce price impact due to adverse selection, traders

smooth their tradingover timewithoptimal trading strategies thatmapclosely into con-

tinuous scaled limit orders.

Because of linearity, optimal trading strategies canbe implementedwith continuous

scaled limit orders that are exactly linear, not piecewise linear. For each trader, there is a

particular price such that the traderwants tobuy at lower prices and sell at higherprices.

Therefore, each trader can implement an optimal trading strategy by submitting one

buy order and one sell order. The upper limit on thebuy order and lower limit on the sell

order are the prices at which the trader is content neither to be a buyer nor a seller. The

lower limit on the buy order and upper limit on the sell order are arbitrary very low and

very high prices, respectively, that are unlikely to be reached during a trading day. The

slopes of traders’ demand and supply schedules are theoretically constant over time;

this implies that the slopeUmax/(PH −PL ) doesnot have tobeupdated. The limit price at

which each trader chooses not to trade changes over timeas traders’ inventories change

andnewprivate information is received. As apracticalmatter,webelieve that the theory

suggests that tradersmight implementnearly optimal trading strategiesbyupdating the

price limits on their continuous scaled limit buy and sell orders at frequencies like once

per hour or once per day, not once per second or subsecond.

To summarize, in contrast toGrossman andMiller (1988),models of imperfect com-

petition show that traders who take into account their temporary price impact would

never choose todemand immediacyeven thoughdelayed order execution is costly. This

is because the equilibrium cost of very fast execution of orders is very high because

traders providing immediacy to others rationally infer from a desire for immediacy that

the trader demanding immediacy has valuable private information. This makes imme-

diacy so expensive that, given a choice between paying a high price to trade quickly and

a low price to trade slowly, traders choose to trade somewhat slowly.

If an exchange were to offer both continuous scaled limit orders, these recent the-

oretical models imply that, exactly consistent with Fischer Black’s conjectures, the in-
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stantaneous liquidity in standard limit order books would dry up, and almost all traders

would use continuous scaled limit orders to access continuous liquidity over time.

4 Related Proposals

Frequent batch auctions, random time delays, and participating orders are different

alternative proposals for limiting the gains associated with being the fastest high fre-

quency traders in a market with standard limit orders. Our proposal is compatible with

these proposals and also with quantity and price speed bumps.

Frequent Batch Auctions. Budish, Cramton and Shim (2015) propose frequent batch

auctions as amechanism for limiting the rewards frombeing the fastest trader in a stan-

dard limit order book. The idea is for exchanges to process messages at fixed time in-

tervals, such as every second or every 100 milliseconds. The batching interval is large

relative to the speed differences between traders, whichmaybe only a fewmilliseconds.

When messages are processed as a batch, the order of arrival of messages processed in

the same batch does not matter. As a result, the first orders received do not obtain any

advantages of time priority over orders received later in the same batch.

Our proposal for continuous scaled limit orders is fully compatible with frequent

batch auctions. Suppose, as we have assumed, that the clock for calculating quantities

executedwith continuous scaled limit orders ticks once everymillisecond. Suppose two

continuous scaled limit orders are received during a sub-millisecond time interval dur-

ingwhich the clock does not tick. Since the clock does not tick, no trading occurs during

this time interval at any rate. The order in which the messages are processed therefore

does not matter because there is no time priority in the limit order book. Thus, our

proposal for continuous scaled limit orders will treat orders arriving during the same

millisecond time interval in the same way regardless of the order in which they arrive.

In this respect, our proposal for continuous scaled limit orders is compatible with fre-

quent batch auctionswith a batching interval of onemillisecond. This batching interval

is a parameter which could be changed to be 100 milliseconds or one second to match

the interval proposed by Budish, Cramton and Shim (2015). This is the sense in which
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continuous scaled limit orders are compatible with frequent batch auctions.

Since frequent batch auctions contemplate a standard limit order book, frequent

batch auctions do not eliminate the need for an allocation rule like time priority or pro

rata order matching. Since the market clears in increments of one tick, there will typi-

cally be excess supply or demand at themarket clearing price. Frequent batch auctions

require an allocation rule for determining which executable orders do not get executed

at themarket clearing price. One possibility is to give time priority to orders received in

earlier batcheswhile using pro ratamatching for orders received in the same batch. An-

other possibility is to use a pro rata rule for all orders. Regardless of whether orders are

processed in batches or sequentially, a pro rata allocation rule for all orders encourages

traders to submit orders for larger quantities than they expect to execute. A pro rata rule

favors faster traders because frequent batch auctions only lessen, but do not eliminate,

the gains from speed.

Budish, Cramton and Shim (2015) examine the rewards for speed using the simplis-

tic finance theory which assumes that prices are moved by information, not trading.

Suppose that the batching interval is 100 milliseconds and the fastest traders are 5 mil-

liseconds faster than the second fastest traders. Now suppose new information arrives

at some random time, and all traders try to act on it by submitting orders with revised

prices as fast as possible. Then the fastest orders will arrive in an earlier batch than the

second fastest in 5 percent of the batch auctions. With a speed difference of 5 millisec-

onds and a batching interval of 100milliseconds, the gains from being the fastest trader

are reduced by 95 percent.

This logic implies that the gains from speed could be reduced further bymaking the

batching interval longer. Suppose the batching interval is increased from 100 millisec-

onds to 1 second. Then this logic implies that the gains from being faster fall by 99.5

percent, not 95 percent.

The logic changeswhen the underlying economicmodel to justify it is changed from

the simplisticmodel that quantitiesdo notmoveprices to a dynamic equilibriummodel

in the spirit of Vayanos (1999) or Du and Zhu (2017). These more realistic models im-

ply that sophisticated traders will spread their participation out over time so that they

purchase desired quantities more or less continuously over the course of a day. If the
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batching interval increases by a factor of ten from100milliseconds to 1 second, then so-

phisticated traders will increase the size of their orders by a factor of ten. Even though,

with the longer batching interval, attempts to pick off orders are successful only 0.5 per-

cent of the time rather than 5.0 percent of the time, the quantity picked offwill increase

by a factor of ten. Thus, the gains are unaffected bymaking the batching interval longer

because the size of sophisticated orders is proportional to the batching interval.

Our proposal for continuous scaled limit orders is based on the idea that message

costs induce traders using a standard limit order book to submit orders that are subop-

timally large. If this is the case, then increasing the batching interval to make optimal

order size largerhelps the traders submittingsuboptimally largeorders. Consistentwith

our view, Lee et al. (2004) and Barber et al. (2009) find that individual traders in the Tai-

wanese stock market lose more than two percent of Taiwan’s GDP trading stock. From

1995 to 1999, the Taiwan Stock Exchange operated with batch auctions held every 90

seconds. They show that while large institutions smooth out their trading by partici-

pating in numerous auctions, individual traders place less frequent orders and suffer

economically significant losses. This evidence suggests it would require a batching in-

terval ofmore than 90 seconds to reduce the losses of retail investorswith highmessage

costs.

With continuous scaled limitorders, a traderwithhighmessage costs can protect his

orders against beingpickedoffmuchmore effectively thanwith frequent batch auctions

in a standard limit order book. Continuous scaled limit orders protect traders with high

message costs by building order shredding into the order execution automatically.

Random Time Delays. Harris (2013) proposes that random time delays be added to

the processing of messages to place, cancel, and modify limit orders. For example, the

exchangemight add a time lag with a uniform distribution over some fraction of a sec-

ond which is long relative to the differences in speeds of the fastest traders and other

fast traders. This has the effect of shuffling the order in which messages are received

so that the message which was sent first has about a fifty percent probability of being

processed before a message sent a small fraction of a second later. In effect, this lev-

els almost completely the playing field on which the fastest traders and slightly slower
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traders compete. While aimed at standard limit order books, random time delays could

also be used with continuous scaled limit orders, in which case the already tiny gains

from being faster than other traders would become even tinier.

Participating Orders. Black (1995) proposed “average-price market orders” and “in-

dexed limit orders” as modifications to standard limit orders that implement a similar

approach to market design. Both of these order types are similar to VWAP and TWAP

strategies, which traders use to trade at the same average price as other traders over

time in the context of a standard limit order book. Black’s proposal is similar to ours in

that it attempts to promote gradual trading by incorporating automatic adjustments to

orders into the order itself rather than require traders to cancel and replace orders fre-

quently. Our proposal is more radical than Black’s because it changes in a fundamental

way themanner inwhich exchanges clearmarkets. It represents a new continuousmar-

ket design for securities exchanges, not just a new order type.

PriceSpeedBumps. While continuousexchanges allow traders to tradepatientlywith-

out incurring large message costs, some traders may nevertheless choose to trade with

extreme urgency, either intentionally or bymistake. To prevent such orders from creat-

ing price disruptions like “flash crashes,” continuous exchanges can adopt straightfor-

ward rules such as the price and quantity speed bumps.

A price speed bump begins when the price changes quickly over a short period of

time, for example, bymore thanm+5 cents overm seconds. Suppose the pricehas been

stable at $40.00 per share for several minutes, at which point a sudden order imbalance

makes the tentative market clearing price fall by $0.20 per share to $39.80. Since the

maximum immediate price change allowed is $0.05 per share and $39.95 is well-above

the tentative price of $39.80, the speed bump kicks in. The speed bump stays in effect

until the minimum price it allows, which falls at the rate of $0.01 per second, gener-

ates no excess supply. If the market clears at a price of $39.80 per share, it will take 15

seconds of no trading before trading takes place at $39.80 per share. Excess supply is

calculated by hypothetically executing at the minimum allowed price all orders in the

market over the time interval that the speed bump is in effect. At the moment when

33



theminimumallowed price no longer generates excess supply, the newmarket clearing

price will be the perhaps-slightly-higher price that clears the market for the entire du-

ration of the speed bump. Thus, a trader whose sell order at $39.80 was resting in the

market for all 15 seconds will have 15 seconds of cumulative volume executed at $39.80

when trading restarts after a delay of 15 seconds. This particular structure for a speed

bump not only protects naive traders but also is hard to game. Suppose a trader places

a large urgent order for the purpose of disrupting trading by stopping price formation,

then tries to cancel the order before the minimum allowed price ever becomes a mar-

ket clearing price. Then the order cancelation itself is likely to end the speed bump and

execute all of his disruptive trades at the worst possible price for him. This mechanism

for implementing price speed bumps discourages intentionally disruptive trading.

Quantity SpeedBumps. Bilateral bargaining in a dealermarket allows dealers to offer

different terms to different customers and to exclude customers from trades theywould

like to participate in. For example, a scrupulous dealer might charge a lower bid-ask

spread to a customer perceived to have little private information, and an unscrupulous

dealer might take advantage of a poorly informed customer by offering bad prices that

other customers would be willing to improve upon.

Organized exchanges have a natural structurewhich facilitates all traders having ac-

cess to the same trading opportunities,with the trades going to the traders willing to of-

fer the best prices. On organized exchanges, the spirit of this principle is violated when

a buyer and a seller negotiate a gigantic block in a dealer setting, place prenegotiated

matching buy and sell orders at almost exactly the same time, and cross the block so

fast that other traders do not have enough time to improve one side of themarket or the

other by participating in one side of the trade or the other.

A quantity speed bump is a mechanism for slowing down trade on an organized ex-

change so that all traders have enough time to participate in large blocks. A quantity

speed bump implies that orders with large urgency, for example, executing one day’s

trading volume in less than one minute, should be exposed to the entire market for a

sufficiently long time so that traders with moderately slow technology can participate

in almost all of the transaction. This, in effect, prevents traders from supplying instan-
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taneous liquidity in a targeted manner to specific counterparties by excluding other

traders; it allows all traders to participatemost of the time that theorder is actively being

executed in the market.12 For example, exchanges might have rules which slow down

fast trading so that executing one day’s “normal” volume takes at least five minutes.

5 Conclusion.

Offering continuous scaled limit orders on securities exchanges wouldmake it possible

to implement Fischer Black’s vision of continuous electronicmarkets without requiring

traders to place numerous limit orders. Continuous scaled limit orders dramatically re-

duce the profits that high frequency traders make by using their technology to exploit

the discreteness in today’s markets. They further protect the rest of the market from

being picked off by encouraging high frequency traders to compete among themselves.

Continuous scaled limit orders address the inefficient arms race among high frequency

traders by almost eliminating the profitability of being slightly faster than other traders.

Our proposal is different from other policy proposals such as frequent batch auctions

proposed by Budish, Cramton and Shim (2015) and randommessage processing delays

proposed byHarris (2013) in that we directly address the source of the underlying prob-

lem, the perverse incentives created by limit order discreteness in price, quantity, and

time.

In today’smarkets, various exchanges operate simultaneouslyand compete for trad-

ing volume. Much of this fragmentation results from standard limit orders books with

largeminimum tick size (Chao, Yao and Ye, 2017). Different exchanges use different fee

structures, such asmaker-taker or taker-maker pricing, tomimic tradingwith fractional

tick size. Fragmentationalso allows traders to get around timepriorityby routing orders

to different exchanges. We believe that if exchanges offered continuous scaled limit or-

ders, they would attract trading volume and these incentives for fragmentation would

disappear. If a continuous exchange operates along with a standard exchange, traders

12Of course, traders might try to violate the spirit of the rule by trading throughmultiple accounts with

undisclosed common ownership or coordination. Such suspicious trading, which would be genuinely

highly coincidental if not the result of coordination, should trigger an automatic audit by the exchange.
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with low and moderate technology would trade in a continuous exchange to protect

themselves from being picked offwithout incurring largemessage costs. This would al-

low trading to consolidate on a smaller number of exchanges. We speculate that there

might be one dominant exchange offering continuous scaled limit orders, facing price

competition from a handful of smaller competing exchanges. Studying whether an ex-

change offering continuous scaled limit orders would dominate various other market

designs is an interesting topic for future study.
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